
Computer Physics Communications 315 (2025) 109731

Available online 27 June 2025
0010-4655/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

A neural-network-based Python package for performing large-scale atomic

CI using pCI and other high-performance atomic codes

Pavlo Bilous a, ,∗, Charles Cheung b, Marianna S. Safronova b

a Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany
b Department of Physics and Astronomy, University of Delaware, DE 19716, USA

A R T I C L E I N F O A B S T R A C T

The review of this paper was arranged by
Prof. W. Jong

Keywords:

Atomic structure

Electronic correlations

Configuration interaction

Neural networks

Machine learning

Modern atomic physics applications in science and technology pose ever higher demands on the precision of
computations of properties of atoms and ions. Especially challenging is the modeling of electronic correlations
within the configuration interaction (CI) framework, which often requires expansions of the atomic state in huge
bases of Slater determinants or configuration state functions. This can easily render the problem intractable even
for highly efficient atomic codes running on distributed supercomputer systems. Recently, we have successfully
addressed this problem using a neural-network (NN) approach [1]. In this work, we present our Python code for
performing NN-supported large-scale atomic CI using pCI [2] and other high-performance atomic codes.

Program summary

Program Title: nn_for_pci

CPC Library link to program files: https://doi.org/10.17632/yy29nhwkbw.1

Developer’s repository link: https://github.com/pavlobilous/nn_for_pci

Licensing provisions: GPLv3

Programming language: Python

Nature of problem: Exponential scaling of the basis size in the atomic CI approach

Solution method: Iterative NN-based selection of the relevant basis elements out of a large CI basis

References

[1] P. Bilous, C. Cheung, M. Safronova, Phys. Rev. A 110 (2024) 042818.

[2] C. Cheung, M.G. Kozlov, S.G. Porsev, M.S. Safronova, I.I. Tupitsyn, A.I. Bondarev, Comput. Phys. Commun.
308 (2025) 109463.

1. Introduction

Advanced applications of computational atomic physics, such as the
development of novel atomic clocks or studies of astrophysical spectra,
require ever greater precision and, therefore, highly accurate model

ing of electronic correlations. The high-precision treatment of electronic
correlations can be performed within the configuration interaction (CI)
framework [1], in which the electronic many-body wave function is ex

panded in a given basis, usually Slater determinants or configuration
state functions (CSFs). Unfortunately, in this approach, higher precision
implies an exponential increase of the number of needed basis elements,

* Corresponding author.

E-mail address: pavlo.bilous@mpl.mpg.de (P. Bilous).

quickly leading to a numerically intractable eigenvalue problem, even
with highly parallelized codes running on advanced supercomputers.
This requires the development of approximation methods, in particular,
based on a priori selection of the most important basis states.

In our recent work [2], we presented a neural network (NN) ap

proach to running large-scale atomic CI computations. Following the
developments in Refs. [3--6], we introduced important algorithmic im

provements that made the method suitable for large computations of
atomic spectra without considerable overhead for NN operations. Cou

pled with the recent release of the pCI atomic structure codes [7], our
NN-based approach proved to be a powerful tool to tackle the expo

https://doi.org/10.1016/j.cpc.2025.109731

Received 4 March 2025; Received in revised form 30 May 2025; Accepted 24 June 2025

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://orcid.org/0000-0003-1445-3580
https://doi.org/10.17632/yy29nhwkbw.1
https://github.com/pavlobilous/nn_for_pci
mailto:pavlo.bilous@mpl.mpg.de
https://doi.org/10.1016/j.cpc.2025.109731
https://doi.org/10.1016/j.cpc.2025.109731
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2025.109731&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computer Physics Communications 315 (2025) 109731

2

P. Bilous, C. Cheung and M.S. Safronova

Fig. 1. NN-supported computation iteration.

nential growth of the CI basis, which is undoubtedly one of the most
challenging problems in high-precision atomic computations. In this
work, we aim to enable such NN-supported CI calculations as presented
in Refs. [2,3] to the atomic physics community. We present our Python
package implementing the NN-based selection algorithm, along with a
demonstration example of a NN-supported CI computation.

The computation consists of two-block iterations shown in Fig. 1: (1)
the Python code selects the relevant subbasis from the CI basis using the
NN, and (2) an atomic code performs CI with the NN-selected subbasis.
While the Python codes are in principle suitable for supporting any CI
atomic code, we demonstrate the NN support for CI computations per

formed by the recently published pCI atomic code package [7,2]. The
pCI codes are suitable for extremely large parallelized CI calculations
[8] and have demonstrated exceptional accuracy for a wide variety of
many-electron systems, including neutral atoms, highly charged ions,
and negative ions [9--15]. We also present how the NN algorithm can
be implemented with any other atomic code performing CI.

The article is structured as follows. In Sec. 2, we describe the NN

supported algorithm. Sec. 3 is devoted to the installation and description
of the corresponding Python codes. In Sec. 4, we provide an example of
a direct CI computation with the pCI codes. Then in Sec. 5, we demon

strate how the same example is solved using our implementation of the
NN algorithm. In Sec. 6, we demonstrate how the presented NN sup

port can be coupled with any atomic code performing CI. The article is
concluded with a summary in Sec. 7.

2. NN-supported CI algorithm

In the CI approach [1], the wave function is represented as an expan

sion |Ψ⟩ =∑
𝛼 𝑐𝛼 |𝛼⟩ in a fixed basis  = {|𝛼⟩}, where |𝛼⟩ are typically

Slater determinants or CSFs. The unknown expansion coefficients 𝑐𝛼
are then obtained by forming the Hamiltonian with matrix elements
𝐻𝛼𝛽 = ⟨𝛼|𝐻̂|𝛽⟩, and then solving the eigenvalue problem on the basis
. Obtaining high-precision results for complex atomic systems typically
requires a huge basis that may render the CI computation intractable. In
this case, our NN approach can be used to replace the CI computation
by a number of smaller ones on an iteratively growing subbasis 𝑖 ⊂

managed by the NN.

In general, the NN first trains on the data obtained in iteration 𝑖−1,
and then classifies the candidate basis elements from ⧵𝑖−1 as ``impor

tant'' or ``unimportant''. A basis element |𝛼⟩ is considered ``important''
if its weight in the CI expansion 𝑤𝛼 = |𝑐𝛼|2 exceeds a cut-off 𝑥𝑖, set by
the user in each iteration. The basis states classified by the NN as im

portant are included in the subbasis 𝑖 , on which a CI calculation with
an atomic code is then performed. The latter yields the true CI expan

sion coefficients, which are subsequently used to give the NN feedback
on its performance and retrain it in the next iteration. The basis ele

ments which turned out to be unimportant are excluded from 𝑖. The
cutoff for the next iteration is chosen as 𝑥𝑖+1 < 𝑥𝑖. These iterations are
repeated until the corresponding energies obtained at the CI calculation
step are converged or until the available computational resources are
exhausted.

Crucial improvements were introduced in Ref. [2] to the described
procedure, which enabled the use of the NN-supported approach in
large-scale CI for atomic spectra without considerable overhead for the
NN operation. We highlight these here:

Table 1
The versions of Python and the third-party
libraries as used in the present work.

Python NumPy Pandas TensorFlow
3.10.9 2.0.2 2.2.3 2.18.0

Fig. 2. The subpackages of the presented Python package.

• We treat basis states (Slater determinants or CSFs) not separately
but in groups of relativistic configurations. The weight of a rel

ativistic configuration Γ is the total weight of its determinants:
𝑤

(𝑘)
Γ =

∑
|𝛼⟩∈Γ𝑤

(𝑘)
𝛼 , where 𝑘 labels the energy levels.

• Computations are performed not for one energy level, but for a
number of energy levels at once. The ``compound'' weight of a rel

ativistic configuration 𝑤Γ used in the NN-supported algorithm is
given as 𝑤Γ = max𝑘 𝑤

(𝑘)
Γ .

• We assume a smaller-scale (direct or NN-supported) computation
to have been performed prior, which is used in the first iteration of
the presented algorithm, in which the NN is not yet trained.

3. Installation and structure of the package

The Python package presented in this work can be cloned directly
from the GitHub repository https://github.com/pavlobilous/nn_for_pci.
It employs NumPy [16] and Pandas [17] for efficient processing of data
arrays, as well as TensorFlow [18] for leveraging the NN functionali

ties. The version of Python and those of the respective libraries used in
this work are summarized in Table 1. We also tested the package with
the recently released TensorFlow version 2.19.0 and the NumPy version
2.1.3.

The Python package consists of two subpackages illustrated in Fig. 2.
The ``Neural manager'' subpackage contains the tools implementing the
NN-supported algorithm from Ref. [2]. While it is universal and in

dependent of an atomic code, it relies on the coupling functionalities
implemented in the second subpackage ``Atomic code IO.'' The purpose
of the latter is writing the input for the atomic code and reading its out

put. We stress that the ``Atomic code IO'' does not run the atomic code.
Instead, this step has to be performed by the user explicitly. This sub

package must be implemented individually for every atomic code by
following an abstract interface, as discussed in Sec. 6. We provide here
an ``Atomic code IO'' implementation for the pCI atomic codes which
can be used out-of-the-box and serves as an example for other imple

mentations.

The installation guide for the pCI package can be found in Ref. [7].
The base installation includes all programs required to perform the CI
computations for the desired number of low-lying energy levels. In sum

mary, the hfd and bass programs are responsible for the construction
of the set of one-electron basis orbitals following a recurrent procedure
described in Refs. [19,20], and the add, pbasc, and pconf programs
realize the CI algorithm. The Python scripts included in the distribution
of the pCI package automate these steps. We provide only the necessary

https://github.com/pavlobilous/nn_for_pci

Computer Physics Communications 315 (2025) 109731

3

P. Bilous, C. Cheung and M.S. Safronova

information in the context of the present work, and refer to Ref. [7] for
further details on the pCI atomic code package.

4. Example of direct CI using pCI codes

Here, we introduce an example of a direct CI computation using the
pCI codes. We will use then the same example to demonstrate the NN

based approach. We include the input and output files in the directory
example of our GitHub repository. All file paths in this and the follow

ing section will be given relative to this directory.

While our previous work [2] proves feasibility of the NN method for
very large CI computations, here we stick to a medium-size example for
demonstration purposes. In contrast to the cases considered in Ref. [2],
the CI computations we demonstrate here can be performed directly.
Note that in the following sections presenting NN-supported computa

tions, the pCI codes are utilized in the same manner as discussed here.

We consider the Fe16+ highly charged ion with all electrons active
and allow single and double (SD) excitations from the configurations
1𝑠2 2𝑠2 2𝑝6, 1𝑠2 2𝑠2 2𝑝5 3𝑝, and 1𝑠2 2𝑠 2𝑝6 3𝑠 to the virtual orbitals with
the principal quantum number 𝑛 ≤ 15 and the orbital quantum number
𝑙 ≤ 4. Our goal is to obtain the 5 lowest even-parity energy levels of
this ion. The full even-parity CI basis consists of 151 422 relativistic
configurations, corresponding to 9 266 197 Slater determinants.

In the first stage, we modify the config_Fe16+.yml configuration
file, encoding the example. We include this file in the directory full.
We execute the basis.py Python script, which conveniently creates a
basis directory and runs the respective codes to form the orbital basis
set (not to be confused with the CI basis) stored in the HFD.DAT file.
Next, we run the ci.py script to prepare the input for CI calculations
in the generated even0 directory. The script generates the CONF.INP
input file, which contains the list of relativistic configurations spanning
the CI space.

The direct CI computation can now be done in the even0 direc

tory. It is performed using the programs pbasc (computation of the
radial integrals) and pconf (evaluation and partial diagonalization of
the Hamiltonian matrix). After the CI computation is complete, the out

puts (energies and weights of configurations) are written to the file
CONF.RES. In the directory full, we include the input file CONF.INP
with the relativistic configurations, as well as the output file CONF.RES
containing the evaluated CI expansion weights and the level energies.

5. NN-supported CI with pCI codes

An alternate route to the described direct CI computation is our
NN-supported approach, which we demonstrate here. First of all, as
mentioned in Sec. 2, it is assumed that there has been a prior CI com

putation performed on a subbasis of the full basis. We construct this
subbasis by restricting the original basis with principal quantum num

ber 𝑛 ≤ 15 to 𝑛 ≤ 8, resulting in 28 348 relativistic configurations. The
CI computation is performed directly for the 𝑛 ≤ 8 subbasis. We provide
the corresponding input and output files in the prior directory.

Next, we discuss the Python code for NN-supported computations.
We assume that the code snippets are executed in a Python shell. Alter

natively, Python scripts from the GitHub repository can be utilized.

5.1. Establishing communication with pCI

Each of the two subpackages discussed in Sec. 3 and shown in Fig. 2
contains a Python class implementing the main functionalities. The
“Atomic code IO'' subpackage (which is now a specific implementa

tion for pCI) provides the PciIO class used for establishing the com

munication between the ``Neural manager'' and the pCI package. Note
that all needed imports can be performed from the top-level package
nn_for_pci directly, for instance the PciIO class is imported as

> > > from nn_for_pci import PciIO

The user creates an instance of PciIO by providing the paths to the pCI
input (CONF.INP) and output (CONF.RES) files:

• CONF.INP file containing the full (large) set of relativistic config

urations;

• CONF.INP file containing the set of relativistic configurations in
the ``prior'' computation;

• CONF.RES file containing the CI expansion weights resulting from
the ``prior'' computation;

• ``Current'' CONF.INP file;

• ``Current'' CONF.RES file.

The former three files initialize the computation, while the latter two
files serve as data communication with pCI in each iteration. For con

venience, we provide a named tuple class PciIOFiles with the fields
indicating the listed files. The user creates a PciIOFiles object with
the corresponding file paths and passes it to the PciIO constructor:

> > > from nn_for_pci import PciIOFiles
> > >
> > > pci_io_files = PciIOFiles(
> > > conf_inp_full="full/CONF.INP" ,
> > > conf_inp_prior="prior/CONF.INP" ,
> > > conf_res_prior="prior/CONF.RES" ,
> > > conf_inp_current="CONF.INP" ,
> > > conf_res_current="CONF.RES"
> > >)
> > >
> > > pci_io = PciIO(pci_io_files)

The created pci_io object encapsulates the coupling of the ``Neural
manager'' subpackage to the pCI atomic codes, and is used in an auto

mated manner.

5.2. Starting NN-supported computation

In order to start a NN-supported CI computation, we first import the
NeuralManager class, which is the main class of the ``Neural manager''
subpackage:

> > > from nn_for_pci import NeuralManager

and instantiate it using the pci_io object created above:

> > > mng = NeuralManager(pci_io)

Creating a NeuralManager
== > Loading full basis...

Full basis size: 151422
Features: 115

Done.

At this moment, the full set of relativistic orbitals is loaded into a 2D
NumPy array with the height equal to the basis size and the width equal
to the number of features, that is the parameters characterizing each
configuration (here, the populations of the relativistic orbitals). The next
step is to call the NeuralManager method start_new_comp:

> > > mng.start_new_comp(0.05)

Starting a new neural -network -supported computation
== > Loading prior basis...

Prior basis size: 28348
Done.
== > Adding randoms on top...

Computer Physics Communications 315 (2025) 109731

4

P. Bilous, C. Cheung and M.S. Safronova

Fraction of randoms: 0.05
Number of randoms: 6153

Done.
== > Writing input for the atomic code...

Number of written: 34501
Done.

As input, we provided the fraction 0.05 of the non-prior configurations
to be randomly included. Note that in large computations, a smaller frac

tion may be more appropriate. First, it loads the data from the ``prior''
computation. Then, it adds on top a number of configurations chosen
randomly from the rest of the full basis, which are needed for the NN
to explore beyond the prior set of configurations. Since the CI coeffi

cients for the randomly added configurations are unknown, we need to
evaluate them by running pCI.

For large computations, the basis set constructed here may be too
big for running pCI directly. In this case, the user can choose to include
the ``prior'' basis in the resulting CONF.INP file not completely, but up
to a given weight cutoff 𝑦. This can be achieved by passing log10 𝑦 to
the start_new_comp method as an additional keyword-only argument
cutlog. This allows the weights for the randomly added configurations
to be evaluated with a smaller pCI run. At the same time, the full data
available from the ``prior'' run are used for the subsequent NN training.

The pCI run is performed not within the Python session, but by sub

mitting a separate (usually strongly parallelized) job. Before exiting the
current Python computation, we save it by executing the save_comp
method:

> > > mng.save_comp("_saved_comp")

Saving computation
path= ’_saved_comp ’

Done.

This saves the 1D NumPy arrays which track the basis selection pro

cess. The code up to this point is contained in the Python script file
start.py, and the printed output in the start.log file in our GitHub
repository. The resulting CONF.RES file after the pCI run is contained in
the start directory. Note that since the described procedure contains
randomization, the user will obtain different CONF.INP and CONF.RES
files.

5.3. First iteration with NN

After the pCI code execution finishes and the outputs are written to
the corresponding files, we switch to the first iteration with the NN.

5.3.1. Preparation

The way to create the PciIO and NeuralManager objects demon

strated so far leads to loading the full set of the relativistic configu

rations as a 2D NumPy array. However, the columns of this dataset
are of different scale, since the corresponding orbitals have differ

ent maximal populations. Our package implements two ways to tackle
this issue, which is unfavorable for the NN training. The PciIO class
can be instantiated with an additional argument normalize=True or
digitize=True (which are both by default False and cannot be True
at the same time). It triggers a corresponding transformation of the
dataset with the relativistic configurations immediately after loading.
In case normalize=True is provided, each column of the dataset is
normalized with respect to the maximal value in this column. The ar

gument digitize=True leads to the transformation of integer orbital
populations in the relativistic configurations to binary format, with each
digit treated as a separate feature. Note that the ``trivial'' features, such
as those having a constant value (``0'' or ``1'') across the whole dataset,
are deleted.

In this example we choose the option digitize=True:

> > > pci_io = PciIO(pci_io_files , digitize=True)

Note that this transformation typically increases the number of features
(i.e. the number of the 2D NumPy array columns) as seen from the out

put when instantiating the NeuralManager class:

> > > mng = NeuralManager(pci_io)

Creating a NeuralManager
== > Loading full basis...

Full basis size: 151422
Features: 231

Done.

Here, the digitization and subsequent deletion of the trivial features in

creased the width of the data from 115 to 231. For more explanation
we refer to Ref. [2] and, in particular, Table I therein showing a demon

stration example.

Now we load the previous Python computation as

> > > mng.load_comp("_saved_comp")

Loading computation
path= ’_saved_comp ’

Done.

5.3.2. NN setting

Our implementation of the NN-supported algorithm assumes that the
user encodes the NN setting as a TensorFlow model, which is then auto

matically used within our package. In this way, there remains flexibility
in the NN structure, which only has to satisfy the NN input and output
format. Also other elements of the NN setting (optimizer, loss function,
hyperparameter values etc.) are provided by the user together with the
TensorFlow model. We construct here an NN model based on Ref. [2]
which can be used as a starting point for further NN setting optimiza

tion. One NN input entry corresponds to one relativistic configuration
and consists of its orbital populations in the digitized format. The NN
output consists always of 2 neurons which encode the probabilities of
the given relativistic configuration to be important or unimportant, that
is, their values must lie in the range (0,1) and sum to 1. In the follow

ing, we provide the code for the NN setting from Ref. [2]. We refer to
the classical book [21] for a general introduction to NNs and to the
book [22] for a practical NN introduction using TensorFlow.

We employ in this work the Keras package [23], which enables usage
of the TensorFlow NN functionalities in an easy and high-level way.
First, we import the necessary Keras classes:

> > > from tensorflow.keras.models \
> > > import Sequential
> > > from tensorflow.keras.layers \
> > > import InputLayer , Dense
> > > from tensorflow.keras.callbacks \
> > > import EarlyStopping

The NN architecture is encoded as

> > > inpdim = mng.features_num
> > >
> > > model = Sequential()
> > > model.add(InputLayer((inpdim ,)))
> > > model.add(Dense(inpdim , activation= ’relu ’))
> > > model.add(Dense(inpdim , activation= ’relu ’))
> > > model.add(Dense(inpdim//2 , activation= ’relu ’))
> > > model.add(Dense(inpdim//4 , activation= ’relu ’))
> > > model.add(Dense(2 , activation= ’softmax ’))

Computer Physics Communications 315 (2025) 109731

5

P. Bilous, C. Cheung and M.S. Safronova

Here, we first obtained the size of one NN input entry via the Neural
Manager property features_num and used it to determine the sizes of
the hidden NN layers. In all hidden layers, rectified linear unit (reLU) is
used as the activation function. In order to guarantee the interpretability
of the NN output as a probability distribution, we applied the softmax
activation function in the output NN layer.

We ``compile'' the created Tensorflow model as follows

> > > model.compile(
> > > optimizer= ’adam ’ ,
> > > loss= ’categorical_crossentropy ’ ,
> > > metrics=[’accuracy ’]
> > >)

We chose here the standard ``adam'' optimization algorithm [24] for
the NN training. The discrepancy of the NN output and the ``correct''
answer is measured by categorical cross-entropy, which is a standard
choice for softmax-classifiers. The monitored metric is the accuracy, that
is the ratio of the entries classified by the NN correctly. Note that the
accuracy is monitored on a ``validation set'' held out from the training
data in advance and never exposed to the NN. It is used to stop the NN
training once no progress in the classification quality is achieved (so
called ``early stopping'').

Apart from the TensorFlow model, our package requires three
Python dictionaries containing parameters for (1) the initial NN evalua

tion, (2) the NN training, and (3) the prediction using the NN. The initial
NN evaluation is performed on the full training set and is controlled by
the dictionary

> > > init_params = {
> > > ’batch_size ’: 32 * 32 * 32 ,
> > > ’verbose ’: 2
> > > }

The provided batch_size entry determines the size of the batches
when the NN is applied to the training set. Note that the Keras default is
32, which can unnecessarily slow down the performance if this param

eter is not set explicitly to a larger value. For the NN training, we use
the following dictionary:

> > > es = EarlyStopping(
> > > monitor= ’val_accuracy ’ ,
> > > restore_best_weights=True ,
> > > patience=5
> > >)
> > >
> > > train_params = {
> > > ’epochs ’: 200 ,
> > > ’validation_split ’: 0.2 ,
> > > ’verbose ’: 2 ,
> > > ’callbacks ’: [es]
> > > }

Here, we first created an instance of the Keras EarlyStopping class
for managing early stopping based on the monitored accuracy. The en

try patience=5 tells the NN training not to stop immediately after a
lower NN performance is observed, but to attempt another 5 training
epochs. The model with the best achieved performance is then restored
as controlled by restore_best_weights=True. The epochs pa

rameter determines the maximum number of training epochs, whereas
validation_split encodes the size of the validation set relative to
the full training set.

The NN prediction is controlled by the following dictionary:

> > > apply_params = {
> > > ’batch_size ’ : 32 * 32 * 32 ,

> > > ’verbose ’: 0
> > > }

Note that since the NN is applied to sort out a potentially large number
of relativistic configurations, it is especially important here to specify
batch_size. Otherwise, the Keras default value of 32 is used, poten

tially resulting in a strong slowdown of this step.

5.3.3. Basis sortout

As the NN-setting is prepared, we can switch to sorting out the large
CI basis using the NN. In each NN-supported iteration, this requires the
user to set the following two parameters. Firstly, as described in Sec. 2,
the ``importance'' of relativistic configurations is determined by the cut

off 𝑥𝑖. In this first iteration, we choose log10 𝑥1 = −8.5. Secondly, the
NN needs feedback not only on the basis elements it classified as impor

tant, but also on those classified as unimportant. Therefore, we include
in the current CI basis 𝑖, a number of randomly chosen configurations
discarded by the NN. We refer to this step as ``balancing'' and choose
the ``balancing fraction'' of 0.5 following Ref. [2]. In this case, if the NN
suggests 𝐾 important configurations, we add on top 𝐾∕2 configurations
considered by the NN as unimportant.

We now have all necessary ingredients to call the NeuralManager
method neural_sortout, which is the central component of our
Python package, encapsulating the NN part of one NN-supported itera

tion (see Fig. 1):

> > > cutlog = -8.5
> > > bal_frac = 0.5
> > >
> > > mng.neural_sortout(cutlog , bal_frac , model ,
> > > init_params , train_params , apply_params)

Sorting out the basis using a neural network
cutlog: -8.5
== > Reading and preparing weights...

Prior weights were present;
they are taken into account and deleted.

Done.
== > Training the neural network...

Training set size: 34501
...of which important: 9362
<NN EVALUATION OMITTED >

Done.
== > Applying the neural network...

Application to: 116921
Classified as important: 18615

Done.
== > Balancing the next training set...

Balancing fraction: 0.5
Balance set size: 9307

Done.
== > Writing input for the atomic code...

Number of written: 37284
Done.

For brevity, we omit here the printed output from the evaluation of the
NN classification accuracy before the training and after each training
epoch. The full output for this and the subsequent NN-supported iter

ations is provided in the *.log files, together with the corresponding
Python scripts.

This completes the NN part of the current iteration. The computation
(i.e., the internal 1D NumPy arrays tracking the selection process) can
be now saved along with the NN model:

> > > model.save("_saved_model1.keras")
> > > mng.save_comp("_saved_comp1")

Computer Physics Communications 315 (2025) 109731

6

P. Bilous, C. Cheung and M.S. Safronova

Table 2
The number of relativistic configurations and the computational times for the pCI stage in the
NN-supported iterations, the full computation, and the ``prior'' computation are presented. The
entry ``start'' represents the stage described in Sec. 5.2.

Full Prior Start Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5
Rel. configs 151 422 28 348 34 501 37 284 35 859 49 617 60 629 60 070
Time, min 137 3 5 12 13 24 32 36

Fig. 3. Convergence of the energy levels to the corresponding energies on the full
CI set with NN-supported iterations. ``Start'' labels the starting stage described
in Sec. 5.2.

Saving computation
path= ’_saved_comp1 ’

Done.

Here we used the save method available for Keras models. Now the
Python session can be closed, and a CI computation can be performed
using the resulting NN-selected set of configurations.

5.4. Further iterations

After the CI results are obtained, the computation described in
Sec. 5.3 is performed again on a smaller importance cutoff. In each
further iteration, the NN is not created from scratch, but loaded using
the Keras function tensorflow.keras.models.load. Note also that
in the very last iteration, balancing of the training set discussed above
should be omitted by setting bal_frac=0, since no NN training fol

lows. This is especially important for large computations, since the last
iterations are the most numerically demanding.

For convenience, we provide the Python scripts iter*.py for five
NN-supported iterations performed in this work. The outputs printed by
the Python scripts are contained in the iter*.log files. The CONF.RES
output files are provided in the iter* directories. Since the NN

supported iterations contain randomization, the user will obtain their
own versions of these outputs.

5.5. Discussion of results

After performing the five NN-supported iterations for the considered
example, we show in Fig. 3 how the energy levels converge to the cor

responding energies on the full CI set. Here, ``Start'' labels the starting
stage described in Sec. 5.2. Note that for larger computations, the full CI
energy might not be possible to directly evaluate. We refer to Ref. [2]
for a discussion of an extrapolation procedure for the energies.

In Table 2, we present the CI basis sizes at different NN-supported
iterations, as well as for the full CI computation and the ``prior'' compu

tation. The listed times refer only to how long it takes to run the pconf
program, which accounts for the majority of the whole CI computation.
The program pbasc was run only once for the full CI and took negli

gible time. While the pCI codes were run on 10 computational nodes,

each with 32 CPU cores, the Python scripts with NN were executed in

teractively on a single CPU core and took negligible time, due to crucial
algorithmic improvements introduced in Ref. [2].

In this demonstration, the total time of 122 min taken by all itera

tions of the NN algorithm almost reaches the time of 137 min needed
for direct CI. However, for larger cases the NN algorithm offers a clear
advantage. In Ref. [2], we considered examples where direct CI com

putations lied far beyond the computational possibilities. There, we
demonstrated that the NN-based computations were much more effi

cient with respect to an alternative ``basis upscaling'' method. The ag

gregate execution time for the direct CI computations was about 284
hours, compared to 71 hours of execution time using the NN-supported
CI approach [2]. We emphasize that in addition to the approximate 5x
reduced computational time, less ``human'' time was required to set up
various CI computations. This concludes the demonstration of our NN
method with the atomic pCI package, and we switch to a discussion of
possible extensions to other atomic codes.

6. Coupling to other atomic codes

While the previous discussion specifically involves the pCI package,
the demonstrated NN support can also be coupled with other atomic
codes. The block ``Neutral manager'' (see Fig. 2) is universal and can
be used without any changes with a different atomic code, while the
coupling part ``Atomic code IO'' must be implemented from scratch fol

lowing a particular interface. This interface is encoded and provided
with our Python package as an abstract class AtomicCodeIO.

A custom coupling is created by the user as a class inheriting from
AtomicCodeIO:

> > > from nn_for_pci import AtomicCodeIO
> > >
> > > class MyAtomicCodeIO(AtomicCodeIO):
> > >
> > > def read_full_basis(self):
> > > ... # your code here
> > >
> > > def read_prior_basis(self):
> > > ... # your code here
> > >
> > > def read_prior_weights(self):
> > > ... # your code here
> > >
> > > def read_current_weights(self):
> > > ... # your code here
> > >
> > > def write_current_basis(self , which_write):
> > > ... # your code here

The inheritance enforces implementation of the above five methods,
which are supposed to perform writing the input for the atomic code
and reading its output. We stress that running the atomic code for CI
computations does not belong to the responsibilities of the presented
Python codes and is performed by the user separately. Once imple

mented in this way, the MyAtomicCodeIO class becomes compatible
with NeuralManager.

Computer Physics Communications 315 (2025) 109731

7

P. Bilous, C. Cheung and M.S. Safronova

The methods to be implemented must adhere to particular input and
output formats summarized by the following.

• read_full_basis takes no input and returns a 2D NumPy ar

ray for the full CI basis set with rows corresponding to relativistic
configurations and columns representing relativistic orbital popu

lations.

• read_prior_basis is the same as read_full_basis, but for
the ``prior'' CI basis set.

• read_prior_weights takes no input and returns a 1D NumPy
array with weights obtained in the ``prior'' computation.

• read_current_weights takes no input and returns a 1D NumPy
array with weights obtained in the ``current'' CI run.

• write_current_basis writes input for the next CI run. The ar

gument which_write is a 1D boolean NumPy array with True
corresponding to the relativistic configurations to be written.

In this way, the NeuralManager class encapsulating the NN method
operates with NumPy arrays communicated with the coupling class.

The user is free to introduce further functionalities to the coupling
class beyond the five obligatory methods. For instance, in our compu

tations with the pCI codes, the NN received as input not populations of
the relativistic orbitals directly, but their digitized versions. This feature
was implemented within the PciIO coupling class and was controlled
by its constructor argument digitize. This behavior can be reintro

duced also for other atomic codes. Note, however, that at the first stage
of the computation described in Sec. 5.2, NeuralManager identifies
positions of the ``prior'' basis in the full basis as represented by the
2D NumPy arrays returned by the functions read_start_basis and
read_full_basis, respectively. Due to this implementation detail, it
is important to ensure that at that stage, both NumPy arrays contain rela

tivistic orbitals populations in the same format. In particular, in Sec. 5.2,
both arrays are in the original (not digitized) format.

7. Summary

We presented our Python package for performing NN-supported
atomic CI computations. While our previous work [2] demonstrated this
approach for large-scale CI, here we employed a medium-size example
for presenting the code and the computational workflow. Our Python
codes implementing the NN are used not as a standalone tool, but in cou

pling with an atomic code performing CI computations. We share our
package coupled out-of-the-box to the recently published parallelized
pCI atomic codes [7]. We also demonstrate how a coupling to a differ

ent atomic code can be established by following an interface included
in our package. This makes the presented Python package a universal
tool for NN-supported large-scale atomic CI.

CRediT authorship contribution statement

Pavlo Bilous: Writing -- original draft, Validation, Resources,
Methodology, Formal analysis, Conceptualization, Writing -- review
& editing, Visualization, Software, Project administration, Investiga

tion, Data curation. Charles Cheung: Writing -- review & editing,
Visualization, Software, Project administration, Investigation, Formal
analysis, Conceptualization, Writing -- original draft, Validation, Re

sources, Methodology, Funding acquisition, Data curation. Marianna S.
Safronova: Writing -- original draft, Validation, Software, Project ad

ministration, Investigation, Formal analysis, Writing -- review & editing,
Visualization, Supervision, Resources, Methodology, Funding acquisi

tion, Data curation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work was supported by the US NSF Grant No. OAC-2209639 and
PHY-2309254. The developments and calculations in this work were
done through the use of IT resources at the University of Delaware,
specifically the high-performance Caviness and DARWIN computer clus

ters. PB gratefully acknowledges the ARTEMIS funding via the Quan

tERA program of the European Union provided by German Federal Min

istry of Education and Research under the grant 13N16360 within the
program ``From basic research to market''.

Data availability

Data will be made available on request.

References

[1] I.P. Grant, Relativistic Quantum Theory of Atoms and Molecules: Theory and Com

putation, Springer New York, New York, NY, 2007.

[2] P. Bilous, C. Cheung, M. Safronova, Neural-network approach to running high

precision atomic computations, Phys. Rev. A 110 (2024) 042818, https://doi.org/

10.1103/PhysRevA.110.042818.

[3] P. Bilous, A. Pálffy, F. Marquardt, Deep-learning approach for the atomic configu

ration interaction problem on large basis sets, Phys. Rev. Lett. 131 (2023) 133002,
https://doi.org/10.1103/PhysRevLett.131.133002.

[4] J.P. Coe, Machine learning configuration interaction, J. Chem. Theory Com

put. 14 (11) (2018) 5739--5749, https://doi.org/10.1021/acs.jctc.8b00849, pMID:
30285426 arXiv:https://doi.org/10.1021/acs.jctc.8b00849.

[5] W. Jeong, C.A. Gaggioli, L. Gagliardi, Active learning configuration interaction for
excited-state calculations of polycyclic aromatic hydrocarbons, J. Chem. Theory
Comput. 17 (12) (2021) 7518--7530, https://doi.org/10.1021/acs.jctc.1c00769.

[6] S.D. Pineda Flores, Chembot: a machine learning approach to selective configuration
interaction, J. Chem. Theory Comput. 17 (7) (2021) 4028--4038, https://doi.org/10.

1021/acs.jctc.1c00196, pMID: 34125549.

[7] C. Cheung, M.G. Kozlov, S.G. Porsev, M.S. Safronova, I.I. Tupitsyn, A.I. Bondarev,
pci: a parallel configuration interaction software package for high-precision atomic
structure calculations, Comput. Phys. Commun. 308 (2025) 109463, https://doi.

org/10.1016/j.cpc.2024.109463.

[8] C. Cheung, M. Safronova, S. Porsev, Scalable codes for precision calculations of
properties of complex atomic systems, Symmetry 13 (4) (2021), https://doi.org/

10.3390/sym13040621.

[9] C. Shah, M. Togawa, M. Botz, J. Danisch, J.J. Goes, S. Bernitt, M. Maxton, K. Köbnick,
J. Buck, J. Seltmann, M. Hoesch, M.F. Gu, F.S. Porter, T. Pfeifer, M.A. Leutenegger, C.
Cheung, M.S. Safronova, J.R. Crespo López-Urrutia, High-precision transition energy
measurements of neon-like fe xvii ions, Astrophys. J. 969 (1) (2024) 52, https://

doi.org/10.3847/1538-4357/ad454b.

[10] C. Shah, S. Kühn, S. Bernitt, R. Steinbrügge, M. Togawa, L. Berger, J. Buck, M.
Hoesch, J. Seltmann, M.G. Kozlov, S.G. Porsev, M.F. Gu, F.S. Porter, T. Pfeifer,
M.A. Leutenegger, C. Cheung, M.S. Safronova, J.R. Crespo López-Urrutia, Natural

linewidth measurements of the 3𝑐 and 3𝑑 soft-x-ray transitions in ni xix, Phys. Rev.
A 109 (2024) 063108, https://doi.org/10.1103/PhysRevA.109.063108.

[11] S. Eustice, D. Filin, J. Schrott, S. Porsev, C. Cheung, D. Novoa, D.M. Stamper-Kurn,
M.S. Safronova, Optical telecommunications-band clock based on neutral titanium
atoms, Phys. Rev. A 107 (5) (May 2023), https://doi.org/10.1103/physreva.107.

l051102.

[12] C.C.M.S.S. David, R. Leibrandt, Sergey G. Porsev, Prospects of a thousand-ion sn2+

Coulomb-crystal clock with sub-10−19 inaccuracy, Nat. Commun. 15 (2024) 5663.

[13] S. Kühn, C. Cheung, N.S. Oreshkina, R. Steinbrügge, M. Togawa, S. Bernitt, L. Berger,
J. Buck, M. Hoesch, J. Seltmann, F. Trinter, C.H. Keitel, M.G. Kozlov, S.G. Por

sev, M.F. Gu, F.S. Porter, T. Pfeifer, M.A. Leutenegger, Z. Harman, M.S. Safronova,
J.R.C. López-Urrutia, C. Shah, New measurement resolves key astrophysical fe xvii
oscillator strength problem, Biophys. Rev. Lett. 129 (24) (Dec. 2022), https://

doi.org/10.1103/physrevlett.129.245001.

[14] E.B. Norrgard, D.S. Barker, S.P. Eckel, S.G. Porsev, C. Cheung, M.G. Kozlov, I.I. Tupit

syn, M.S. Safronova, Laser spectroscopy of the 𝑦 7𝑝𝑜
𝐽

states of cr i, Phys. Rev. A 105
(2022) 032812, https://doi.org/10.1103/PhysRevA.105.032812.

[15] C. Walter, S. Spielman, R. Ponce, N. Gibson, J. Yukich, C. Cheung, M. Safronova, Ob

servation of an electric quadrupole transition in a negative ion: experiment and the

ory, Biophys. Rev. Lett. 126 (8) (Feb. 2021), https://doi.org/10.1103/physrevlett.

126.083001.

[16] C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cour

napeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith, R. Kern, M. Picus, S. Hoyer,
M.H. van Kerkwijk, M. Brett, A. Haldane, J.F. del Río, M. Wiebe, P. Peterson, P.
Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, T.E.
Oliphant, Array programming with NumPy, Nature 585 (7825) (2020) 357--362,
https://doi.org/10.1038/s41586-020-2649-2.

http://refhub.elsevier.com/S0010-4655(25)00233-4/bib8F398A27C1A67CDDCCAA578C72BB208Es1
http://refhub.elsevier.com/S0010-4655(25)00233-4/bib8F398A27C1A67CDDCCAA578C72BB208Es1
https://doi.org/10.1103/PhysRevA.110.042818
https://doi.org/10.1103/PhysRevA.110.042818
https://doi.org/10.1103/PhysRevLett.131.133002
https://doi.org/10.1021/acs.jctc.8b00849
https://doi.org/10.1021/acs.jctc.8b00849
https://doi.org/10.1021/acs.jctc.1c00769
https://doi.org/10.1021/acs.jctc.1c00196
https://doi.org/10.1021/acs.jctc.1c00196
https://doi.org/10.1016/j.cpc.2024.109463
https://doi.org/10.1016/j.cpc.2024.109463
https://doi.org/10.3390/sym13040621
https://doi.org/10.3390/sym13040621
https://doi.org/10.3847/1538-4357/ad454b
https://doi.org/10.3847/1538-4357/ad454b
https://doi.org/10.1103/PhysRevA.109.063108
https://doi.org/10.1103/physreva.107.l051102
https://doi.org/10.1103/physreva.107.l051102
http://refhub.elsevier.com/S0010-4655(25)00233-4/bib1D53D559711E97E58236E4EF70D448EBs1
http://refhub.elsevier.com/S0010-4655(25)00233-4/bib1D53D559711E97E58236E4EF70D448EBs1
https://doi.org/10.1103/physrevlett.129.245001
https://doi.org/10.1103/physrevlett.129.245001
https://doi.org/10.1103/PhysRevA.105.032812
https://doi.org/10.1103/physrevlett.126.083001
https://doi.org/10.1103/physrevlett.126.083001
https://doi.org/10.1038/s41586-020-2649-2

Computer Physics Communications 315 (2025) 109731

8

P. Bilous, C. Cheung and M.S. Safronova

[17] T. pandas development team, pandas-dev/pandas: pandas, https://doi.org/10.5281/

zenodo.3509134, Feb. 2020.

[18] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A.
Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K.
Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War

den, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: large-scale machine
learning on heterogeneous systems, software available from tensorflow.org, https://

www.tensorflow.org/, 2015.

[19] M.G. Kozlov, S.G. Porsev, V.V. Flambaum, Manifestation of the nuclear anapole mo

ment in the m1 transitions in bismuth, J. Phys. B 29 (4) (1996) 689--697.

[20] M.G. Kozlov, S.G. Porsev, M.S. Safronova, I.I. Tupitsyn, Ci-mbpt: a package of pro

grams for relativistic atomic calculations based on a method combining configura

tion interaction and many-body perturbation theory, Comput. Phys. Commun. 195
(2015) 199--213.

[21] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016, http://www.

deeplearningbook.org.

[22] A. Geron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd edition, O’Reilly
Media, Inc., 2019.

[23] F. Chollet, et al., Keras, https://keras.io, 2015.

[24] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv:1412.6980,
2017.

https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://www.tensorflow.org/
https://www.tensorflow.org/
http://refhub.elsevier.com/S0010-4655(25)00233-4/bib1D65004A4C6AA7868D61360FB611B778s1
http://refhub.elsevier.com/S0010-4655(25)00233-4/bib1D65004A4C6AA7868D61360FB611B778s1
http://refhub.elsevier.com/S0010-4655(25)00233-4/bibFFC6DB1AB4E80365669986407AD75934s1
http://refhub.elsevier.com/S0010-4655(25)00233-4/bibFFC6DB1AB4E80365669986407AD75934s1
http://refhub.elsevier.com/S0010-4655(25)00233-4/bibFFC6DB1AB4E80365669986407AD75934s1
http://refhub.elsevier.com/S0010-4655(25)00233-4/bibFFC6DB1AB4E80365669986407AD75934s1
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://refhub.elsevier.com/S0010-4655(25)00233-4/bib19053BED77BD2B48274E1B0FC2B62C09s1
http://refhub.elsevier.com/S0010-4655(25)00233-4/bib19053BED77BD2B48274E1B0FC2B62C09s1
http://refhub.elsevier.com/S0010-4655(25)00233-4/bib19053BED77BD2B48274E1B0FC2B62C09s1
https://keras.io
http://refhub.elsevier.com/S0010-4655(25)00233-4/bibB61AA712B09412E149F03AB7CFC0671Fs1
http://refhub.elsevier.com/S0010-4655(25)00233-4/bibB61AA712B09412E149F03AB7CFC0671Fs1

	A neural-network-based Python package for performing large-scale atomic CI using pCI and other high-performance atomic codes
	1 Introduction
	2 NN-supported CI algorithm
	3 Installation and structure of the package
	4 Example of direct CI using pCI codes
	5 NN-supported CI with pCI codes
	5.1 Establishing communication with pCI
	5.2 Starting NN-supported computation
	5.3 First iteration with NN
	5.3.1 Preparation
	5.3.2 NN setting
	5.3.3 Basis sortout

	5.4 Further iterations
	5.5 Discussion of results

	6 Coupling to other atomic codes
	7 Summary
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References

