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The Ni12þ ion features an electronic transition with a natural width of only 8 mHz, allowing for a
highly stable optical clock. We predict that the energy of this strongly forbidden 3s23p4 3P2 → 3s23p4 3P0

electric quadrupole transition is 20 081ð10Þ cm−1. For this, we use both a hybrid approach combining
configuration interaction with a coupled-cluster method and a pure configuration interaction calculation for
the complete 16-electron system, ensuring convergence. The resulting very small theoretical uncertainty
of only 0.05% allowed us to find the transition experimentally in a few hours, yielding an energy of
20 078.984ð10Þ cm−1. This level of agreement for a 16-electron system is unprecedented and qualifies our
method for future calculations of many other complex atomic systems. While paving the way for a high-
precision optical clock based on Ni12þ, our theory and code development will also enable better predictions
for other highly charged ions and other complex atomic systems.
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Introduction—Highly charged ions (HCI) are very inter-
esting for searches for physics beyond the standard model
of elementary particles and interactions [1]. Several of
their predicted optical transitions have some of the highest
sensitivities to variations of the fine-structure constant
and, accordingly, enhance the corresponding dark matter
searches and tests of local position invariance [1–3]. Such
optical transitions are laser accessible and can provide
high-precision frequency standards in atomic clocks [1,4].
Developing highest-accuracy clocks based on HCI is

motivated by their extreme atomic properties: a much lower
sensitivity to external electromagnetic perturbations than
singly charged ions or neutral atoms and a strong sup-
pression of systematic frequency shifts, such as ac Stark,
electric quadrupole, and higher-order magnetic field shifts
and from blackbody radiation.
This new class of clocks was demonstrated in 2022 with

the reported optical magnetic-dipole transition in Ar13þ
with an evaluated systematic frequency uncertainty of
2.2 × 10−17, comparable to current operating optical clocks
[4,5]. Increasing this accuracy is unpractical with Ar13þ due
to the relatively short lifetime of the excited state, limiting
interrogation times and, accordingly, the statistical uncer-
tainty of optical frequency comparisons due to quantum

projection noise to 3.2 × 10−14=
ffiffiffi
τ

p
. Operating a clock

with this stability would require an averaging time τ of
2 000 000 s to reach its systematic uncertainty and more
than 30 years to average to 10−18. Thus, we have chosen the
strongly forbidden 3s23p4 3P2 → 3s23p4 3P0 electric quad-
rupole clock transition in Ni12þ [6] as the most suitable
candidate for the next HCI clock, with a convenient
wavelength, narrow transition, and relatively simple elec-
tronic structure. Its dominant systematic effects, such as
electric quadrupole and second-order Zeeman shifts, are
expected to be similarly small as for Ar13þ but have to be
verified experimentally.
The main obstacle here was the large uncertainty of the

clock state excitation energy of 0.5% (100 cm−1 or 3 THz),
which would have required long scan times to find the
extremely weak transition, which has a linewidth of only
8 mHz. In contrast, the wavelength of the 3P2 → 3P1 M1
transition could be measured in emission due to its higher
transition rate, resulting in a more accurate value [7] of
19 541.758ð18Þ cm−1. In addition, two more energy levels
of the same configuration are reasonably well known
and serve as computational benchmarks. In this Letter,
we show how the problem is solved with a uniquely precise
computation of Ni12þ low-lying energies with an uncer-
tainty below 10 cm−1, unprecedented for such a compli-
cated atomic system. Applying recently developed fast
laser frequency scanning techniques [8], our prediction
allowed us to locate the sought-after transition within just
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one day at 20078.984� 0.010 cm−1, only 2 cm−1 away
from it. his comprises the first direct excitation of a
transition in a highly charged ion without previous emis-
sion measurements in hot plasmas, as were available in the
previously measured HCI clock candidates Ar13þ [4,9,10]
and Ca14þ [11,12]. Our Letter has, thus, paved the way for
the development of the Ni12þ clock and demonstrates the
reliability of future calculations needed for the search of
other clock transitions in HCI.
Theory: CI + all-order method—Ni12þ has 16 electrons

in its ground state 1s22s22p63s23p4 configuration. We start
with a hybrid approach that combines the configuration
interaction (CI) method with the linearized coupled-cluster
single-double (all-order) method [13]. In our “CI + all-
order” method, CI is used to treat the six outer 3s23p4

electrons, which we consider to be valence electrons. To
account for the correlations between the ten core 1s22s22p6

and valence electrons, we applied the coupled-cluster
method as described in Ref. [13].
The CI wave function is obtained as a linear combination

of all distinct states of a given angular momentum J and
parity ΨJ ¼

P
i ciΦi. In the pure CI approach, the wave

functions and energies of the low-lying states are obtained
by solving the many-electron Schrödinger equation
HΦn ¼ EnΦn [14]. The CI + all-order approach incorpo-
rates core excitations in the CI method by defining an
effective HamiltonianHeffðEÞ ¼ H þ ΣðEÞ, whereH is the
Hamiltonian in the frozen-core approximation. The energy-
dependent operator ΣðEÞ is constructed using the coupled-
cluster method to account for the virtual excitations of the
ten core electrons [13].
The one-electron orbitals of the core shells were obtained

by solving the Dirac-Hartree-Fock equations in the central
field approximation using a VN−6 basis, where N is the
number of electrons. The basis set was constructed on a
radial grid using B splines, with 40 splines of order 7,
constrained to a spherical cavity of radius R ¼ 7 a:u: This
included a total of seven partial waves (lmax ¼ 6) and
orbitals with a principal quantum number n of up to 35. The
Breit and Coulomb interactions were included on the same
footing for constructing the basis set, which is large enough
for the coupled-cluster computations to accurately generate
the effective Hamiltonian.

We apply several approximations of increasing accuracy
to construct the effective Hamiltonian: second-order many-
body perturbation theory (MBPT), linearized coupled-
cluster method with single and double excitations
(LCCSD), and coupled-cluster method with single, double,
and triple excitations (CCSDT). We find very small
differences, from −1 cm−1 for the 3P1 state to −10 cm−1

for the 1S0 state between the CIþ LCCSD and the CIþ
MBPT results, showing that all higher-order core-valence
correlations are very small. The CCSDT method included
nonlinear single and double terms and linear triple terms,
which are small and are listed under the column “NLþ Tr”
in Table I.
The convergence of the six-electron CI calculation to an

accuracy of a few cm−1 is a major computational challenge
and had not been demonstrated prior to this Letter to our
knowledge. We start with all possible single and double
(SD) excitations from the 3s23p4, 3s23p34p, 3s3p44s,
3s3p43d, 3s23p23d2, and 3p6 reference configurations to
17spdfg, which means that all orbitals with the principal
quantum number up to n ¼ 17 and the spdfg partial waves
were included. The resulting energies are listed in Table I
in the column “17spdfg.” We expand the basis set and
increase the number of starting configurations until a
numerical convergence is reached in all parameters of
the CI calculation. The procedure for extending the basis
set is illustrated in Fig. 1. We start from the six reference
configurations mentioned above but perform SD excita-
tions to growing sets of orbitals. First, we increase only the
principal quantum number to n ¼ 29 while keeping the
maximum orbital angular momentum l ¼ 4 (i.e., spdfg
partial waves). The resulting contributions listed in Table I
show that convergence has been reached for the spdfg
partial waves, given a negligible (≲0.01%) contribution of
states with n > 22 for the 3P0 and 3P1 levels.
Next, in addition to all excitations previously included

[16], we allow SD excitations to the orbitals of h, i, k, and l
partial waves. We list the contributions of the h and i partial
waves separately to illustrate their significance. CI com-
putations typically include only the first few orbitals
(e.g., 6 − 12h) for higher partial waves. We unexpectedly
found that this practice drastically underestimates their
contribution. It turned out that most of the contributions

TABLE I. Contributions to the excitation energies of the low-lying states (in cm−1) calculated using the CI + all-order method. See the
main text for detailed explanations of all contributions. Experimental values are displayed in column “Expt. [7,15].” The last two
columns display the difference between the theoretical and experimental values.

Configuration
17

spdfg
18–22
spdfg

23–29
spdfg 6–28 h 7–28 i l > 6

Extra
configurations NLþ Tr TEI QED Total Expt. [7,15] Difference Difference (%)

3s23p4 3P1 19 459 9 0 8 4 4 0 −3 16 50 19 547 19542 6 0.03%
3s23p4 3P0 20 114 −3 −1 −8 −4 −4 −5 −3 −34 33 20 086 20 060(100)
3s23p4 1D2 47 441 −49 4 −98 −46 −40 −19 −2 −163 43 47 063 47 033 30 0.06%
3s23p4 1S0 98 686 −89 9 −134 −66 −64 −56 −8 −416 50 97 894 97 836 58 0.06%
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from higher partial waves come from orbitals with higher
principal quantum numbers. In fact, more than half of the
contribution for the h partial wave comes from the (18–28)
h orbitals in this basis set. This trend worsens for the i
orbitals, where almost all of the contribution comes from
n > 17. In the pure CI computation described below, we
can partly remedy this issue by using a smaller, more
compact basis built using a recurrent procedure with a
better VN potential. However, these orbitals lie very high in
the spectrum, and excitations to orbitals with large n have
to be included to ensure convergence. We extrapolated the
contributions of the partial waves with l > 6 based on the
convergence of energies for the h, i, k, and l partial waves.
In Table I, we list the total contribution to the energies of
higher partial waves in the column “l > 6.”
Further significant contributions due to excitations from

additional reference configurations are listed in column
“extra configuration” in Table I. To select a new reference
configuration, we order all configurations from the
17spdfg run by their weights and then extend the set of
the reference configurations by adding those with the
largest weight first. We first allow single excitations from
1200 reference configurations, then SD excitations from
41 more, and keep adding configurations until we reach
convergence with good numerical accuracy. We note that
CI convergence required a tremendous increase of the
number of configurations: Single-double excitation to
the 17spdfg orbitals produces 256 000 configurations;
expanding the basis set to 28spdfgh yields another
933 000 configurations, while including i orbitals adds
another 418 000 configurations. A total of 3.3 million extra
configurations were included to obtain the result in column
“extra configuration” These calculations became possible
through improvements of the highly parallel pCI package
[17,18] and separation of the total computations of more
than 5 million configurations into a large number of
manageable computations using PYTHON interfaces devel-
oped to automate this process.
We calculated QED corrections and three-electron

interaction (TEI) corrections following Refs. [19,20],

respectively, and listed them in columns “QED” and
“TEI,” respectively. The adequate (10% or better) accuracy
of QED calculations has been established in Ref. [21]. TEI
corrections are due to our separation of the computations
into core and valence sectors and are not accounted for by
the CI + all-order method. In column “total,” we present the
final energies, calculated by adding all corrections beyond
the initial results 17spdfg. In the last two columns
in Table I, we show the small differences between our
final CI + all-order values and the experimental results
compiled in the National Institute of Standards and
Technology [7,15] database of only 0.03% for the 3P1

state and 0.06% for the 1D2 and 1S0 states, respectively.
Theory: Pure CI method—The largest uncertainty in the

previous approach comes from interactions of four and
more electrons that are omitted in the TEI-type correction.
Their effect would be intrinsically included in the pure CI
approach. Therefore, we now correlate all 16 electrons on
the same footing within the CI instead of using the coupled-
cluster effective Hamiltonian approach. The challenge now
is that the number of configurations needed would require
total and per-core memory resources beyond those com-
monly available at high-performance clusters. We have
investigated different ways of efficiently breaking the CI
computation to separate expansions yielding additive energy
corrections that enabled us to perform this computation.
First, we form a smaller basis set using the recurrent

procedure described in Refs. [14,22], because we no longer
need the large basis used for coupled-cluster computations.
This basis set is constructed in a more compact radial cavity
of 5 a.u., which led to an accelerated convergence with the
principal quantum number n. We start by allowing only SD
excitations from the outer six electrons to 20spdfghikl
orbitals and extrapolating for higher partial waves. These
results are listed in the three columns labeled “six elec-
trons” in Table II. We find that CI saturation was achieved
already at n ¼ 17, as the contribution of n ¼ 18–20 was
negligible (≲0.01%) for all partial waves. Then, we allow
additional SD excitations from the 1s, 2s, and 2p shells
of the inner ten electrons to the spdfg partial waves from
the same dominant reference configurations (columns “all
electrons” in Table II). We also verified that additional
excitations of the inner ten electrons to the basis states in
l > 4 partial waves gave a negligible contribution.
Next, we analyzed how energy levels change when we

add excitations from additional reference configurations
with the highest weights, which we select as in the CI + all-
order approach described above (see column “extra con-
figuration” in Table II).
In total, we computed contributions from 9.6 million

configurations broken down into 54 separate computations,
with our memory of 31 TB limiting the set size for each
single run to roughly 350 000 configurations. This Letter
prompted us to develop a neural-network-based algorithm
that reduced memory needs and computation time by a

FIG. 1. Illustration of the basis set upscale. 17spdfg includes
all orbitals up to n ¼ 17 for spdfg partial waves. Darker blocks
indicate orbitals with larger contributions to the energies and
wave functions.
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factor of 3 and human involvement even more [23]. The
network was trained to select the most important configu-
rations more efficiently in an automated, iterative process.
The essentially exact computations above confirmed these
neural network results.
In addition, we estimate the contribution of all remaining

configurations in the CI expansion, which is impossible to
compute directly. We studied how the difference in weights
of a configuration contributing to the excited and ground
states affects the respective energy contribution if we
consider this configuration as a reference one. We found
a linear dependence (similar for all four levels) with a relative
weight of 0.01% leading to a correction of about −11 cm−1.
We tested this relation using contributions to the energies

of configurations that were already computed. We added
weights from 200, 2000, and 9500 additional reference
configurations until convergence was reached and esti-
mated the total contribution based on the above relation.
We note that 9500 reference configurations would lead to
probably billions of configurations in the CI expansion,
making it completely untractable with any computational
facilities. This contribution is listed in column “estimate
full CI.” To the best of our knowledge, such a quantitative
estimate to complete CI has never been made before.
The QED corrections are listed in the column labeled

“QED,” and the final energies under column “total” are
compared with the experimental values [7,15] displayed in
the last two columns. The 3P0 energies obtained by two
approaches differ by only 5 cm−1. The difference from the
experiment for the 3P1 state is 6 and 8 cm−1. Based on this,
we conservatively estimate the energy uncertainty for 3P0 to
be 10 cm−1. We take the CI value 20081� 10 cm−1 to be
final, since the convergence of the CI was demonstrated and
all corrections except QED nearly cancel for the 3P0 level.
Experiment: Finding the clock transition—Starting

with this prediction, we experimentally searched for the
3P2 → 3P0 clock transition in Ni12þ. For this, we produced
HCI in an electron beam ion trap (EBIT) [24] and trans-
ported them to a cryogenic Paul trap [25], where we
cotrapped one Ni12þ with a single Beþ ion for sympathetic

cooling and readout through its coupled motion using
quantum-logic-inspired methods [10,26].
The uncertainty range of our calculation is 300 GHz

(10 cm−1) and can be scanned within one day of continu-
ous operation using the methods introduced in Ref. [8]. In
summary, we used our spectroscopy laser at 498 nm to
drive excitations to the 3P0 state, which were then detected
by the absence of an excitation signal on the 3P2 → 3P1

transition. For this, we first identified the 3P2 → 3P1

transition using an off-resonant optical dipole force
(ODF) [8]. The ODF arises from the two counterpropagat-
ing laser beams with frequenciesω1¼ω and ω2 ¼ ω − ωm,
where ωm is the characteristic motional frequency of the
ions’ in the trap. As the laser frequency ω approaches the
electronic resonance (≲10 MHz), the ion motion is coher-
ently excited [8,27] without populating the electronically
excited state 3P1. The ensuing phonon excitation is detected
with high efficiency through the Beþ logic ion by mapping
motional to spin excitation. The 3P2 → 3P1 transition fre-
quency is determined to be 585.847263� 0.000010 THz
using a commercial wave meter calibrated with an iodine-
stabilized laser at 626 nm. This result agrees well with the
EBITemission measurement [7] and the transition frequency
calculated above.
In the search for the clock transition, we then used the

motion induced by the ODF at a fixed detuning of 5 MHz
from the 3P2 → 3P1 stretched-state resonance as a signal
that vanishes upon excitation of the 3P2 → 3P0 clock
transition. A frequency-doubled titanium-sapphire laser
provided about 100 mW of power at 498 nm for this.
We estimated an on-resonant Rabi frequency of 20 kHz and
a specified laser linewidth of < 100 kHz averaged over
100μs. With these parameters, we estimated an optimal
scanning speed of 1 GHz=s at 50 cycle repetitions, follow-
ing Ref. [8] for this experiment. We expect a 20% excitation
probability to the 3P0 state when the laser frequency hits the
transition during a scan. A search cycle consists of three
phases. Initially, the 3P2, mJ ¼ 2 edge state is prepared
by optical pumping (∼70%) on the 3P2 → 3P1 transition,
taking approximate 50 ms. In the second step, the HCI is

TABLE II. Contributions to the excitation energies of the low-lying states (in cm−1) calculated using the 16-electron CI method.
Results in the three columns labeled “six electrons” are obtained, allowing excitations from the last six electrons. In all other calculations
labeled “all electrons,” the excitations are allowed from all 16 electrons. See the text for detailed explanations of all contributions.
Experimental values are displayed in column “Expt. [7,15].”.

Six electrons All electrons

Configuration
17

spdfg
17

l > 4

18–20
spdfghikl

11
spdfg

12–18
spdfg

Extra
configurations

Estimate
full CI QED Total Expt. [7,15] Difference

Difference
(%)

3s23p4 3P1 19 395 16 0 83 6 1 0 49 19 550 19 542 8 0.04%
3s23p4 3P0 20 052 −15 0 14 −5 5 −3 33 20 081 20 060(100)
3s23p4 1D2 47 348 −179 −1 −105 −2 −45 −5 42 47 051 47 033 18 0.04%
3s23p4 1S0 98 397 −260 −4 −318 −110 38 −24 52 97 771 97 836 −66 −0.07%
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irradiated by the 498 nm laser, and the laser frequency is
linearly swept over a span of 5 GHz in 5 s. Finally, the
population of the ground state is read out by interrogating
the 3P2 → 3P1 transition with the ODF described above.
The last readout step is repeated 70 times to utilize the
experimental dead time of 2 s needed to reset the laser to its
sweeping starting frequency. This quantum nondemolition
detection scheme [28] allowed us to detect the excitation
from the ground state with nearly 100% fidelity. In total, we
covered in six hours 100 GHz within the uncertainty range
until we found the clock transition. Figure 2 shows an
example of an off-resonant clock-laser scan leading to high
motional excitation by the ODF (blue dots), as well as the
motional detection background (orange dots). The shaded
color bands cover the region of the mean of the excitation
probability and their standard deviations. The green points
show excitation signals when scanning across the clock
transition and within the background and motional exci-
tation bands provide a clear signature of the clock-
transition excitation. We observe detection events between
the detection bands due to excitation to the clock state and
subsequent deexcitation to different Zeeman substates
within one scan. This can arise from the laser crossing
motional and micromotion sidebands during the remainder
of the scan, as well as spontaneous decay after initial
excitation. The resulting change in common detuning of the
readout laser to the 3P1 transition leads to a reduction of
the ODF readout signal. For a more precise measurement,
we narrowed the scanning range to 300 MHz, which is
our uncertainty from drifts of the not-stabilized
titanium-sapphire laser. We determined the 3P2 → 3P0

clock-transition frequency at 601.9528� 0.0003 THz

[20078.984� 0.010 cm−1] with our wave meter, in excel-
lent agreement with the theory prediction. Future frequency
stabilization of the laser to hertz-level linewidth will allow
us to perform quantum logic spectroscopy [10] and operate
an optical clock based on Ni12þ.
Conclusion—We predicted the 3P2-3P0 transition energy

using two different theoretical approaches, demonstrating
full convergence of a 16-electron CI computation including
9.6 million configurations and developed a method to
estimate the residual contributions of the far more numer-
ous configurations that cannot be realistically included in
existing computer clusters. This Letter demonstrates how
our advanced theory and code development lead to much
smaller calculational uncertainties. Our optimized parallel
code package has been made available to the community
[18]. We demonstrated its ability to include millions of
configurations by effectively separating different classes of
excitations. Our subsequent development of automated
neural network tools further reduces the use of memory
and computation time [23]. The method and code develop-
ment from this Letter can be used to constrain uncertainties
in future calculations of other complex atoms and ions.
The subsequent experiment demonstrated excitation

of this clock transition at 20078.984� 0.010 cm−1, just
2 cm−1 away from the prediction. This remarkable agree-
ment with the ab initio calculations of a 16-electron system
inspires confidence in future calculations of other complex
atomic systems and enables the further development of a
Ni12þ high-precision atomic clock.
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