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The use of atomic systems as accurate magnetic field probes requires precise characterization of
the particle’s magnetic properties. Insufficient knowledge of the spatial and temporal characteristics
of the external magnetic field often limits the determination of the corresponding atomic parameters.
Here, we present a quantum logic scheme mitigating systematic effects caused by temporal magnetic
field fluctuations through simultaneous co-magnetometry. This allows measurement of the ground
state g factors of a single **Ti'" ion with uncertainties at the 107° level. We compare experimentally
determined g factors with new theoretical predictions using a combination of configuration interac-
tion (CI) and second-order many-body perturbation theory (MBPT). Theory and experiment agree
within the expected level of accuracy. The scheme can be applied to many atomic species, including

those that cannot be directly laser cooled.

Landé g factors quantify magnetic moments associated
with angular momenta of particles. Precise knowledge
of these allows the use of atomic systems as magnetic
field probes in laboratory [1-4] and astrophysical set-
tings [5, 6]. Currently, the most precise g factor mea-
surements are performed in Penning traps [7]. There, g
factors can be measured independent of the precise mag-
netic field strength by relating it to the trapping fre-
quencies. This approach mitigates uncertainties due to
magnetic field fluctuations, which would otherwise limit
the achievable precision, allowing for determinations of
g with an uncertainty of < 107 [8, 9]. However, Pen-
ning traps operate at field amplitudes of several Tesla
to confine the charged particle. Such high magnetic
fields prevent the measurement of g; factors for singly
charged ions with weak LS-angular-momentum-coupling,
since orbital angular momentum (L) and electronic spin
(S) are decoupled in the Paschen-Back regime. Further-
more, the extended averaging times required for these
measurements in Penning traps hinder the accurate mea-
surement of short-lived metastable states. Consequently,
many atomic states lack precise g factor measurements
and rely on theoretical calculations [10, 11].

Here, we present a measurement scheme for accu-
rate determinations of g factors in the weak B-field
regime. This scheme is independent of the specific atomic
species and based on quantum logic in a linear Paul
trap. By simultaneously interrogating a co-trapped logic
ion with a well-known ¢ factor as a co-magnetometer,
our scheme enables precise measurements of the g fac-
tor for a wide variety of atomic states. Measurements
of g factors relying on well-known reference states in the
same species [12-14] and in co-trapped species [15-17]
are an established tool to reduce uncertainty due to in-
sufficient knowledge and control over the magnetic field.
Going beyond previous implementations, we present a

scheme, where the co-magnetometer is not interrogated
interleaved but simultaneously with the spectroscopy ion,
resulting in suppression of systematic errors due to tem-
poral magnetic field variations. Similar schemes have
been demonstrated in Penning traps [18] as well as neu-
tral atom experiments [17] and have been proposed for
the characterization and mitigation of systematic errors
in optical clocks [19, 20]. We implement this scheme to
determine the g factors of all four | J) states of the ground
state a*F of a single *Ti" ion using the 281/2 ground
state in a “°Ca™ ion as a co-magnetometer.

Titanium is an element of significant astrophysical rel-
evance, as its emission and absorption lines are present in
many cosmic spectra such as in stellar spectra [21] and
quasar absorption spectra [22]. This provides valuable
information for studies on the variation of fundamental
constants [23] and stellar composition analysis [24]. Fur-
thermore, titanium is an interesting candidate for testing
quantum electrodynamics (QED) within complex atomic
systems. By comparing the experimentally obtained g
factors to theoretical predictions, this study allows for
the exploration of the role of negative energy states [25]
and QED effects in atomic structure calculations of tran-
sition metal ions, thus advancing our understanding of
fundamental physics in these systems.

The energy shift between adjacent angular momentum
projection eigenstates |m ;) and |my + 1) in a magnetic
field B is given by

2
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with the Landé g factor, the Bohr magneton pg, the elec-
tron mass m., and the speed of light ¢. ¢(® denotes the
second order Zeeman coefficient. Since the g factor for
the 2S; /2 state in 40Ca™t is precisely known from Penning
trap experiments [26], measurement of the 2S; /2 Zeeman
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FIG. 1. Visualization of the measurement principle. A two-
ion crystal is trapped in a linear segmented Paul trap. An
in-vacuum antenna couples states with frequency splittings
in the kHz to MHz regime. The connection between the mag-
netic field B, g factors and Zeeman level splitting is visualized
by a belt drive. In this picture the magnetic field corresponds
to the speed of the belt, the radii of the pulleys represent
the g factors and their angular velocities wca and wri the
Zeeman level splittings for the >S;,» and |a’F, J) manifolds
of the logic ion and the spectroscopy ion, respectively. The
ratio of the g factors (ratio of the pulleys’ radii) can be deter-
mined by measuring the Zeeman splittings (angular velocities
of the pulleys) irrespective of the magnetic field amplitude B.

splitting energy AF¢, during the experimental sequence
determines the magnetic field at the position of the ion
(see Fig. 1 for an illustration of the measurement princi-
ple). Assuming a spatially homogeneous magnetic field,
the g factor of *8Ti™, labelled as gpi, can, to first order,
be inferred from

AET;
i =goax g 2
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where gc, is the ¢ factor for the co-trapped calcium
ground state [26], and AFr; and AE¢, are the Zeeman
energy splittings for titanium and calcium, respectively.
In Eq. (2), higher order contributions to AE can be ne-
glected due to sufficiently small ¢(®) coefficients for the
OCat 281/2 and the **Ti" a’F fine structure states. A
detailed discussion of the method of calculating ¢(®) and
the resulting corrections to gr; are given in the Supple-
mental Material [27].

Ezxperimental setup — The introduced measurement
scheme is realized in a linear segmented Paul trap [28].
A two-ion crystal composed of one “°Ca™ and one *$Ti™
ion is prepared by loading multiple ions of each species
and splitting the resulting crystal until the desired config-
uration is obtained [29]. A detailed description of the im-
plemented quantum logic methods is given in Ref. [30]; in
the following the most relevant aspects are summarized.
Operations coupling the ||} = |Sl/2,mJ = 71/2> and
the |1) = |D5/2, my = 71/2> optical qubit states on the
40Ca™ logic ion are performed with a narrow-linewidth

laser at 729nm. A magnetic field of 0.397mT defines
a quantization axis and results in a “°Ca™ ground state
splitting of ~ 11.135 MHz. *®Ti" state preparation and
quantum logic readout is facilitated using a far-detuned
laser [30, 31] with a wavelength of 532nm driving Ra-
man transitions. Polarization and orientation of the two
Raman beams with respect to the trap axis allow popu-
lation transfer between adjacent Zeeman states as well as
exciting motional modes of the two-ion ensemble. This
way, state information from the spectroscopy ion can be
transferred to the shared motional state and read out
on the logic ion. Radio frequency (rf) fields from an in-
vacuum antenna can couple Zeeman states on both the
calcium and the titanium ion.

Measurement of g-factors — The experimental se-
quence for simultaneously probing Zeeman transitions
in the spectroscopy and the logic ion starts with
ground state cooling (GSC), realized by a combination
of Doppler, electromagnetically-induced-transparency
(EIT) cooling and sideband cooling. The preparation of
a stretched state (|my = +J);) in one of the four a’F
(J € {3/2,5/2,7/2,9/2}) ground states of the *5Ti"
achieved by population transfer pulses on a common mo-
tional red sideband that are rendered irreversible by GSC

n 4°Ca™ [30, 32]. A Ramsey interferometer is opened
on both the 281/2 state and one of the 8Tit aF states
by applying two rf pulses with individual times of t$? /2
(tT1/2) with t, being the time required for a rotation
of the angular momentum by an angle 8 = 7. After a
Ramsey dark time of t$* (t5!) the two Ramsey interfer-
ometers are closed by a t,/2 pulse on each species. This
Ramsey interferometry sequence converts phase differ-
ences between the local rf oscillator and atomic tran-
sition frequency to detectable Zeeman population im-
balances in “°Cat and *®Ti" Zeeman manifolds. The
40Cat state is read out through fluorescence detection
(FD) after shelving the Zeeman state information to state
[1) of the optical qubit. The photon scattering during
the detection introduces motion to the system but does
not change the population distribution in the *8Tit Zee-
man manifold. Next, the *8Ti" Zeeman population is
read out using quantum logic. This is accomplished by
cooling to the motional ground state using the calcium
logic ion and mapping the **Ti" Zeeman population to
a motional mode of the two-ion crystal, which is finally
read out at the “°Ca™ ion by a rapid-adiabatic-passage
(RAP) pulse on a red sideband of the calcium qubit tran-
sition [33]. The full experimental sequence is visualized
in Fig. 2(a). In Fig. 2(b), a typical measurement result
using tﬁi = 300 ps and t%a = t%i + 1 is shown. A de-
tailed description of the fit function used in Fig. 2 (b) is
provided in the Supplemental Material [27].

To follow magnetic field drifts the applied frequency
of the rf pulses was kept on resonance using two individ-
ual servo loops [34]. For each **Ti" ion fine structure
state at least 1000 lock iterations, each comprised of 10
measurement repetitions, were recorded. The Zeeman
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FIG. 2. Simultaneous rf Ramsey spectroscopy on *®TiT and
40Ca*. (a) Experimental sequence starting with motional
ground state cooling (GSC) followed by the preparation of a
|J,my = —J)p, stretched state in the a'F electronic ground
state. Two rf pulses open Ramsey interferometers on the
calcium and titanium ion, sequentially. After a common wait
time of 300 ps two additional pulses close the interferometers.
After state detection on the “°Ca™ qubit transition, the 43Ti™
Zeeman state distribution is mapped to “°Ca™ after additional
GSC and by a red sideband (RSB) RAP pulse with the Raman
laser on *®*TiT. (b) Ramsey fringes for the “°Ca™ ground state
(upper plot) and titanium a*F (J = 3/2) state (lower plot).
Solid lines are fits to experimental data.

splitting frequency stabilities are analyzed using Allan
deviations, depicted in Fig. 3 (a) and (b) for the calcium
and the titanium ion, respectively. An Allan deviation
for quantum projection noise-limited measurements av-
erages down with « /1/n corresponding to white fre-
quency noise, where n is the number of measurements.
For both, the *°Ca™ and *®Ti", white noise behaviour
is observed only on short time scales. On longer time
scales the frequency variation is dominated by magnetic
field fluctuations resulting in a deviation from the /1/n-
scaling of the Allan deviation. However, the recovery of
the white frequency noise scaling of the Allan deviation
for gr; demonstrates the robustness of the scheme against
such fluctuations (see Fig. 3 (c)). This enables a determi-
nation of the g factor with a statistical uncertainty on the
1079 level. The final statistical uncertainties are limited
by the measurement time (for details see the Supplemen-
tal Material [27]). Systematic effects, such as the electric
quadrupole shift and the non-linear Zeeman effect are
estimated to be well below the statistical uncertainties.
However, trap-drive induced ac-Zeeman shifts result in
a significant shift of the measured g factors. The to-
tal systematic and statistical uncertainties are given in
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FIG. 3. Measurement of the g factor of state |J = 3/2) in
the a’F ground state. (a), (b) Allan deviation o, (n) of the
measured calcium S,/ ground state splitting and the A8t
|J =3/2,ms) — |J=3/2,m;— 1) state splitting, respec-
tively. (c) Allan deviation of the calculated g factor. Dashed
lines indicate expected white noise scaling o(n = 1)/y/n.

Table I. The final accuracy of the measured g factors
is limited by the uncertainty of the static magnetic field
gradient resulting in different magnetic field strengths for
the two-ion positions and the uncertainty in the determi-
nation of the oscillating trap magnetic field that causes
the ac-Zeeman shift. A detailed discussion of systematic
shifts can be found in the Supplemental Material [27].
The measured g factors for the fine structure of the a*F
ground states are summarized in Table I.

A large fraction of the magnetic field noise in this
experiment originates from the ac line and is therefore
most prevalent at multiples of 50 Hz. Its influence was
analyzed by measuring the g factor of the |J =3/2),
state for different time delays between the start of the
experimental sequence and the ac line [35]. As shown
in Fig. 4, both frequency measurements vary according
to the changing magnetic field, while the variation of the
extracted g factor is strongly suppressed. This showcases
the success of the co-magnetometry Ramsey scheme.

Theory — In addition to the experimental determina-
tion of the a*F g factors, we have performed theoretical
calculations using an approach combining the configura-
tion interaction (CI) with the second-order many-body
perturbation (MBPT) method [36, 37] (see Supplemen-
tal Material [27] for more information). The CI+MBPT
method allows us to account for explicitly not only
valence-valence correlations (as a pure CI or the many-
configurational Dirac-Fock method used in Ref. [10] does)
but also core-valence correlations. Our analysis demon-
strates a low sensitivity of the g factors presented in
Table I to the core-valence correlations. The g factors
obtained within the framework of CI+MBPT are only
slightly (by ~ (3 — 5) x 107°) larger than the pure



TABLE I. Theoretical and experimental values of the *TiT ¢ factors. grs denotes g factor values calculated taking only
LS-coupling into account. Statistical uncertainties were derived from Allan deviations of the calculated data for the g factors.
Errors given in experiment column are the statistical and systematic uncertainties.

State gLs theory [10, 11] theory [this work] experiment [this work]
a4F3/2 0.39990 0.39853 0.3986 0.3984617(5)stat (244)sys
a'Fs s 1.02858 1.02840 1.0284 1.028318(2)stat (51 )sys
a'Fr /s 1.23813 1.23839 1.2384 1.238325(2)stat (53)sys
a'Fy o 1.33339 1.33388 1.3339 1.333823(4) stat (52)sys
a simultaneous Ramsey interrogation on a Zeeman tran-
5 o4 sition of a co-trapped logic ion in a Paul trap. The low
B Rt Q uncertainty is enabled by a strong suppression of mag-
‘S e netic field noise-induced systematic errors using this co-
hv: 0T T =0 -g- _g Kt magnetometry scheme. The presented method is trans-
s b g ferable to other atomic species and allows to put strong
g 5 a bounds on QED and negative-energy states contributions
for systems where theory and experiment achieve similar
0.5 accuracy. In addition, the precise knowledge of magnetic
8-(5) I - R A A '<'> - 5' = properties in atomic species is relevant for the determi-
e . T T T . 4 T T nation of systematic effects in many applications such as
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FIG. 4. Measurement of the |J = 3/2)., state’s g factor in
dependence of an additional delay between the ac line trigger
and the start of the experimental sequence. Blue squares:
relative deviation from the mean (RDM) of all frequency data
of the measured 4°Ca™ S1/2 splitting. Red circles: relative
deviation from the mean of all frequency data of the measured
Zeeman splitting in the **Ti" J = 3/2 manifold. For the
frequency data, errorbars indicate standard error of the mean.
Black diamonds: extracted g factor; errors indicate statistical
uncertainty propagated from the uncertainty of the frequency
measurements. Sine functions were fitted to the frequency
data to guide the eye. Lower plot: deviation of the extracted
g factor from the mean value (dashed line).

CI values. Our work demonstrated, that these core-
valence correlations already contribute at that level of
accuracy. This implies that the additional digits reported
in Ref. [10] were not intended to be taken as significant,
as no theoretical uncertainty was provided.

Our results show only a small discrepancy with the ex-
perimental data. This finding suggests that higher-order
quantum electrodynamical (QED) contributions and the
effects of negative-energy states, neither of which are in-
cluded, play a crucial role at the level of the achieved
experimental precision. In few-electron systems such as
highly charged ions it has been shown that the inclusion
of these contributions lead to a better agreement of the
theory with the experimental data [16]. The theoretical
and experimental values for the g factors from this work
as well as the theoretical values from Ref. [10, 11] are
listed in Table 1.

Conclusion — We have measured the Landé g factors
of a single ion with a relative precision < 10~ by using

optical atomic clocks or in high precision spectroscopy in
general. Further, we provide new theoretical values for
the g factors and see a good agreement with other the-
oretical predictions [10]. This measurement constitutes
the first g factor measurement of the *8Ti" ground state.
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I. RAMSEY SPECTROSCOPY IN ZEEMAN
MANIFOLDS

In the following, the interference pattern measured for
Ramsey interferometer in the calcium and titanium Zee-
man manifolds will be described. The population in
the calcium ground state |}) = ’Sl/Q,mJ =—1/2) af-
ter the second Ramsey pulse on the |m;=-1/2) —
|my = 41/2) Zeeman transition can be described by

2
P\7VLJ=—1/2> = |C—1/2|
2
1 [Capal W

= |aR|2v

where we define

02 Qr Qr  Atg+9¢
2 _ sin2 ! i
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A Qr . Atp+o)\?
— —sin — -
Q 2 2

as the general solution for a Ramsey experiment [1]. In
Eq. (1) and Eq. (2), 7 = t/2 denotes time for a m/2-
pulse on the Zeeman transition and ¢t the Ramsey dark
time. An additional phase shift between the first and the
second 7/2-pulse is denoted by ¢. Q = v/Q2 + A? is the
effective Rabi-frequency for a detuning A.

In a two-level system, oscillating magnetic fields can be
used to rotate the spin state of an atom. Such rotations
can be expressed in terms of

~ ~

H:'Y'S:’Va:a'er'}/y&er’Yza'Za (3)

with magnetic vector . The spin Pauli matrices ; are
the generators of a SU(2) algebra. This allows us to de-
scribe the dynamics of a N (= 2(J+1))-level system with
total angular momentum J in terms of the N-dimensional
representation of the unitary group D) [2, 3] by

mm (4)
m=—J—J+1,..,J,

J
cht) = > DL a,b]C (0),
J

m/=—

with probability amplitude Cy(nJ ) for a certain state m.
In Eq. (4), a and b describe the two-state time evolu-
tion and depend on the particular choice of detuning and
Rabi-frequency pulses [2]. Starting from an initially pre-
pared streched state (m = —J) the occupation probabil-
ity in state m after the complete evolution of the system
becomes

o]

2J 2(J—m) (7 2(J+m)
= b . 5
(,2,) )
This model assumes that all levels are equally spaced [4]
and that the population is only transferred between ad-

jacent ones. For state m = —J, Eq. (5) then simplifies
to

2
O | = el (6)

In a Ramsey experiment implemented through oscil-
lating magnetic fields, the spin dynamics can be fully de-

scribed by operations satisfying Eq. (3). This enables us



to express the population in the initially prepared state
m = —J using Eq. (2).
lc(J)

m=—J

2
= lal™. )

II. DETAILS ON THEORY

We consider Tit as an ion with three valence electrons
above the closed core [1s2, ..., 3p%]. We start from the
solution of the Dirac-Hartree-Fock (DHF) equations in
the VN=3 approximation, where N is the total number
of electrons. The initial self-consistency procedure was
carried out for the core electrons, and then the 3d, 4s, and
4p orbitals were constructed in the frozen-core potential.

The remaining virtual orbitals were formed using a re-
current procedure described in Refs. [5, 6], where the
large component of the radial Dirac bispinor, f,/;/, was
obtained from a previously constructed function f,;; by
multiplying it by r!~! sin(kr), where I’ and [ are the
orbital quantum numbers of the new and old orbitals
(I' > 1) and the coefficient k is determined by the prop-
erties of the radial grid. The small component g,,/;/; was
found from the kinetic balance condition.

The newly constructed functions were then orthonor-
malized to the functions of the same symmetry. In total,
the basis set included six partial waves (Imax = 5) and
orbitals with the principal quantum number n up to 30.
We included the Breit interaction on the same footing as
the Coulomb interaction at the stage of constructing the
basis set.

We use an approach that combines the configuration
interaction (CI), which considers the interaction between
valence electrons, and a method that accounts for core-
valence correlations [7-9]. The wave functions and energy
levels of the valence electrons were found by solving the
multiparticle relativistic equation [7],

where Hpc is the Hamiltonian in the frozen-core ap-
proximation and the energy-dependent operator X ac-
counts for virtual excitations of the core electrons. We
constructed it using second-order many-body perturba-
tion theory (MBPT) over the residual Coulomb interac-
tion [7]. In the following, we refer to this approach as the
CI+MBPT method.

The set of TiT configurations for even-parity states
was constructed by allowing single, double, and triple
excitations from the main configuration of the ground
state 3d?4s to the 4-14s, 4-14p, 4-14d, 4-14f, and 5-14¢
shells (we designate it as [14spdfg]).

II.1. Energy levels

The energies of the lowest-lying states of Tit are listed
in Table I. The energies of the excited states (in cm~1)

TABLE I. The excitation energies (in cm™") calculated in the
pure CI and CI+MBPT approximations are presented. The
experimental values from the NIST database [10] are given in
the last column.

Config. Term CI CI+MBPT Ref. [10]
3d*4s a’Fs/0 0 0 0
a’Fs /2 61 96 94
a’Fr /o 145 230 226
a*Fy o 253 404 393
3d* b*Fs0 13884 896 908
b*Fs /0 13927 974 984
b*Fyr s 13985 1082 1087
b*Fo 2 14050 1217 1216

are the offsets from the ground state.

In the third and fourth columns, we present the pure
CI and CI+MBPT values. The experimental values from
the NIST database [10] are given in the last column.
As seen, the energies of the 3d® b*F; manifold obtained
in the framework of the pure CI differ essentially (by
13000 cm 1) from the experimental values. Good agree-
ment of these energies with the experiment occurs at the
CI+MBPT stage when we include core-valence correla-
tions. This means that the sensitivity of the b*F; mani-
fold to the core-valence correlations is noticeably higher
than the sensitivity of the a *F; states.

I1.2. g factor

The theoretical values for the g-factors are listed in
Table II. To calculate them, we use the operator for the
interaction with the external homogeneous magnetic field
B, which is assumed to be directed along the z-axis:

Vin = p.B, = % Z(rZ X a;), B, , (9)
K3
where «; is the vector of the Dirac matrices for the 7’s
electron of the ion, e is the elementary charge, ¢ is the
speed of light, and the summation goes over all electrons
of the ion.

A notable contribution to the g-factors comes from the
QED corrections to the dipole magnetic moment opera-
tor and can be estimated as an expectation value of the
operator

[0
A, = up - Zﬁizz,i7 (10)

where « is the fine-structure constant, ug = efi/2m, is
the Bohr magneton, A is the Planck constant, m. is the
electron rest mass, [ is the Dirac matrix, >, = (UOZ f > ,

z
and o, is the Pauli matrix. The respective contributions
to the g-factors are given in the column labeled “QED,,”
in Table II.



TABLE II. Contributions to the g-factors of the low-lying
states. The “CI+MBPT” results are given in the second col-
umn. QED,, denotes contributions from the QED corrections
to the atomic magnetic moment.

State CI+MBPT QEDy, Final Exp.

O 0.40001 -0.00139  0.3986  0.3984622(9)
a4F5/2 1.02836 0.00007 1.0284 1.028318(2)
a’Fr s 1.23786 0.00055  1.2384 1.238326(2)
a*Fos 1.33313 0.00077  1.3339  1.333822(3)
b4F3/2 0.40005 -0.00139  0.3987

b4F5/2 1.02845 0.00007 1.0285

b4F7/2 1.23789 0.00055 1.2384

b4F9/2 1.33307 0.00077 1.3338 1.333769(4)

By comparing the theoretical and experimental results,
we see good agreement. The operator V,,, given by Eq. (9)
mixes the large and small components of the wave func-
tions. In this case, the contribution of negative-energy
states can be non-negligible and should be accounted for.
The QED corrections are taken into account in the lead-
ing approximation. Smaller QED effects should also be
included for better theoretical accuracy. We attribute
the small remaining discrepancy between theory and ex-
periment to these two factors.

III. STATISTICAL ERROR DETERMINATION

For each measurement of the Zeeman splitting frequen-
cies in calcium and titanium, the titanium’s g factor was
calculated from

AET;
i = §Ca——. 11
gr gCa AEc, ( )

The stabilities of the derived ¢ factors were analyzed
using Allan deviations, depicted in Fig. 1. For quan-
tum projection noise-limited measurements exhibiting
white frequency noise, Allan deviations average down
with o< 4/1/n, where n is the number of measurements.
For a single measurement (n = 1) the Allan deviation is
equivalent to the standard deviation of the collected data
defined by

o 2 PN

7o gTi\/<AA5§Z> (%) o
where oap,, and oag; are the standard deviations
of the corresponding measured variables (see Eq. (11)).
From Fig. 1 it can be seen that the Allan deviations follow
the expected scaling o, /v/n (red dashed lines) with the
number of measurements. The final statistical uncertain-
ties considered for the titaniums g factors is determined
using the Allan deviations calculated at n = nyax/2 mea-
surements, where npax represents the total number of
measurements for each .J state.
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FIG. 1. Allan deviations of the derived g factors of the *¥Ti*
|J)-states for a’F,, J € {3/2,5/2,7/2,9/2} and state b*Fy 5.
Dashed lines indicate expected white noise behaviour scaling
x /1/n.

IV. SYSTEMATIC ERROR DETERMINATION

Simultaneous probing of Zeeman transitions in *8Tit,
AFEri, and “°Cat, AEc,, alleviates temporal magnetic
field fluctuations and simplifies the calculation of the
g1 factor of the spectroscopy ion according to Eq. (11).
However, a residual magnetic field gradient along the ion
crystal’s axis as well as higher order contributions of the
Zeeman effect results in additional shifts of the energy
levels and thus the measured g factors. These effects
are discussed below. The uncertainty associated with
gca from previous measurements [11] is on the order of
4 x 1078 and can therefore be neglected.

IV.1. Magnetic field gradient-induced errors

The two ions separated by a distance d experience a
magnetic field difference AB. We assume a constant
linear gradient. AB = 0.665(1.388) nT was derived
through measurements of AFEq, at different positions
in the two-ion crystal. At the position of the titanium
ion the magnetic field is given by Br; = Bc, £ AB =
AEc./(gcatin) = AB, where Bc, is the magnetic field
at the position of the calcium ion. The sign depends on
the ion ordering. The corrected g factor for **Ti™ can be
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FIG. 2. Magnetic field gradient AB = 0.665(1388) nT along
the two-ion crystal axis. Blue dots: Absolute magnetic field
deviation derived from the measured S,/ ground state split-
ting of the calcium ion at the two possible ion positions
in a two-ion crystal. Errorbars show statistical uncertainty
derived from Allan deviations of the calculated field am-
plitudes. The mean magnetic field was calculated to be
Bca =0.397mT.

inferred from AFE1; and AEg, by

AFEr;
= : 13
gr 115 By (13)
AET;
= a . 14
YO (AEca £ gcannAB) 14
For small gradients we can approximate
AB AB?
e 1 O —— 15
gTi =~ 9o + B + < B(zja ) ) ( )
~—~
Aggrad/go

where we defined g9 = gca ﬁggf7 the g factor extracted

under the assumption of a spatially uniform magnetic
field, and the sign is defined by the order of the ions with
respect to the gradient. The relative shift Aggraq/go re-
sulting from the gradient of the magnetic field is therefore
AB/Bg, = 1.674 x 1075, An uncertainty of the gradi-
ent (oap) arises from the uncertainty of AF¢, leading
to a systematic uncertainty oap/Bca = 3.492 x 1076,
Since the uncertainty in the shift is larger than the shift
itself, we consider only the uncertainty of the gradient
in determining the uncertainty of the g factor. However,
collisions switch the ion positions during the measure-
ments, therefore the first order effect from the approxi-
mated gradient (see Eq. (15)) partially averages out and
the considered values overestimate the uncertainty.

IV.2. ac Zeeman shift

In a static magnetic field, the Zeeman splittings fre-
quencies are given by w = AE/h = g;upB/h. However,

an oscillating magnetic field leads to an additional time-
averaged energy shift given by [12]

1 W (B
22— B | (16)

o8- |

TABLE III. Absolute corrections to g factors due to magnetic
field gradient and its uncertainty in brackets.

State Aggrad X 10°
a‘Fs2 0.667(1.392)
a’Fs )2 1.721(3.591)
a‘Fr/ 2.073(4.324)
a’Fy /o 2.233(4.658)

where B, is the field amplitude perpendicular to the
static field defining the quantization axis and (-) denoting
the time average. Since trap drive-induced ac magnetic
fields affect both, the measurement of AFq, and AFETy,
the corrected g factor for the different titanium J states
can be expressed as

B AETi + 6Eri
—dea AECa + 6ECa ’

The Autler-Townes splitting frequency [13] in the cal-
cium’s S; /o ground state was measured to derive B =
3.30(7)pT [12]. The resulting corrections Agac trap =
g1i — gy to the measured g factors are summarized in
Table IV. Values in brackets are errors of the derived cor-
rections assuming 1kHz accuracy in the Autler-Townes
splitting frequency measurement.

Furthermore, we investigated how the rf pulses, which
form the Ramsey interferometer on the titanium ion, af-
fect the measurement of AFEq,. Here, off-resonant rf
pulses induce additional magnetic field shifts in equiv-
alence to laser induced ac light shifts. This leads to an
additional phase accumulation ¢ = 27(w+ Aw)tg during
the dark time ¢ of the Ramsey experiment in the calcium
ground state. This gives rise to an error in the determina-
tion of AEc,. We derived the mean magnetic field from
the measured Rabi frequencies in Ref. [4] weighted by the
ratio between the pulse durations t1' on the titanium ion
and the dark time on the calcium ion t%’d:

glfi (17)

4Ti
(B1) = BL ;- (18)

R
Equation (16) can now be used to calculate the correction
Agac it to the titanium’s g factors arising from the two rf
pulses. The obtained values are summarized in Table IV.
The values for the g factor given in the main text have
been corrected considering the ac Zeeman shifts discussed
aboved and the uncertainty has been included in the total

systematic uncertainty.

IV.3. Quadrupole shift

For states with J > 1/2, the interaction of the elec-
tric quadrupole moment with field gradients results in
an energetic shift that scales with m?. The correspond-
ing Hamiltonian can be written as [14, 15]

fiq = VE@O®), (19)



TABLE IV. Absolute corrections to g factors from ac Zeeman
shifts. Second column: corrections from trap drive-induced ac
Zeeman shift and its uncertainties in brackets. Third column:
Corrections from rf pulses forming the Ramsey interferometer
on the titanium ion.

State Agac trap X 10° Agacrt X 108
a’Fs/0 2.369(0.104) 5.691
a’Fs /2 4.939(0.216) 2.113
a’Fr/o 5.134(0.225) 1.885
a’Fy/o 5.057(0.222) 1.865

where VE®) is the electric field gradient tensor and 6®
is the quadrupole operator. For the quadrupole field in
an ion trap the components i € {0,1,2} of the electric
field gradient are well approximated by (VE®)); = (51'%
where z indexes the direction of the trap axis. Therefore,
the corresponding energy shift of a state |yJm ) is given
by

(vl g ms) = S (m| 8 bydmy)  (20)
The quadrupole moment © is commonly defined as the
expectation value of the operator (S (the ¢ = 0 compo-
nent of the electric quadrupole tensor) in the stretched
state |yJ,my; = J), which maximizes the quadrupole
shift [14, 16]. Consequently, the quadrupole shift can
be bounded as

db. e. (21)

AE
Q< dz

The electric field gradient at the position of an ion in
a two-ion Coulomb crystal in a linear trap along the axis
of dc confinement is given by [17]

dE, 2
= o (22)
dz q

where m is the mass of the calcium ion, w, is the axial
trapping frequency for a single calcium ion, and ¢ is its
charge. For a trapping frequency of 688 kHz for a single
40Ca™ this results in dE./dz = —1.55 x 107 Vm~2. In
a Ramsey measurement the quadrupole effect does not
result in a shift in first order, due to the population sym-
metry with respect to the sign of m ;. However, an error
in Rabi time will result in a frequency shift, since non-
perfect 7/2 pulses will result in non-symmetric states.
A rough estimate for an upper bound of the error in a
g factor measurement for angular momentum state J is
given by

< dE, ©(J)
~ dz ugB’

quuad(J) (23)

which is given in Table V. The quadrupole moments have
been calculated theoretically as described below.

TABLE V. Upper bounds to corrections to the g factor due
to electric quadrupole effects. Electric quadrupole moments

© (in ea}) have been determined theoretically (see also Ta-
ble VI).

State o(J) Agquaa(J) x 107
a’Fs )2 0.23(3) <47
a’Fs )2 0.18(3) <3.7
a’Fr s 0.17(4) <35
a’Fy )2 0.1 <20

TABLE VI. Electric quadrupole moments © (in ea}), ob-
tained in different calculations (explained in the main text),
are presented. Uncertainties are given in parentheses.

State pure CI CI+MBPT (I) CI+MBPT(II) Final

a'Fsp  0.35 0.23 0.20 0.23(3)
a'Fs;»  0.35 0.18 0.15 0.18(3)
a’Fr 049 0.17 0.13 0.17(4)
a'Fys  0.74 0.12 0.06 0.1

by —0.69 —0.45 —0.43 —0.45(2)
bFs,  —0.67 —0.39 -0.37 —0.39(2)
b, —0.93 —0.48 —0.44 —0.48(4)
by —0.68 —0.58 —0.54 —0.58(4)

Theoretical determination of the quadrupole moments

The electric quadrupole moment © of an atomic state
|[yJm ) is given by

0 = 2<7JamJ = J|Q0|7J7mJ = J>

_ J(2J —1)
N (2J+3)(J+1)(2J +1)

The single-electron electric quadrupole operator is deter-
mined as Qo = —er?Cap(n), where n = r/r, and Cy, are
the normalized spherical harmonics [18]. 7 encapsulates
all other quantum numbers.

We calculated the matrix elements (MEs) of the elec-
tric quadrupole operator and quadrupole moments © for
the a*F; and b*F; states. The values © are presented
(in ead, where ap is the Bohr radius) in Table VL.

The results obtained within the framework of the pure
CI and CI+MBPT methods are given in the columns la-
beled “CI” and “CI+MBPT (I)”, respectively. Compar-
ing these results, we see that the quadrupole moments
are sensitive to the core-valence correlations. This is es-
pecially true for the state a 4Fy /2, Whose CI+MBPT value
differs by a factor of 6 from the CI value. As our analysis
shows, in addition, the quadrupole moments of a *F; are
sensitive to the mixing of this level to b*F;. To reproduce
this mixing correctly, one needs to reproduce the energy
differences between the a*F; and b*F; states as well as
possible.

To test the sensitivity of © to the method of construct-

(N1l T)- (24)



ing the basis set and size of the CI space, we performed
another CI+MBPT calculation, designated in the table
as “CI+MBPT (II)”. For this, we constructed a B-spline
basis set in the VN =3 approximation, increasing the num-
ber of partial waves and orbitals in each partial wave. In
total, this basis set included six partial waves (I;ax = 6)
and orbitals with the principal quantum number n up
to 35. In the CI stage, we allowed single, double, and
triple excitations from the main configuration 3d%4s to
[20spdfg]. Thus, the CI space was noticeably more ex-
tended in comparison to the CI+MBPT (I) approach.

Based on the difference between the CI+MBPT (I)
and CI+MBPT (II) results, we assign uncertainties to
the quadrupole moments of the a*F; states. We note
that the value of ©(a?F,J = 9/2), obtained from
the first CI+MBPT calculation is twice the value from
CI+MBPT (II). For this reason, the uncertainty of this
value can be as large as 100%.

IV.4. Quadratic Zeeman shift

The cancellation of magnetic field dependence works
perfectly only in the linear regime, and higher order ef-
fects will lead to a deviation. These deviations arise from
the onset of the demixing of LS coupled states into eigen-
states of spin S and orbital angular momentum states L
when transitioning into the Breit-Rabi regime. There-
fore, the magnitude of the effect strongly depends on the
fine structure interaction and is therefore absent in the
calcium ground state, but needs to be considered for ti-
tanium. Considering the next higher order, the energy
shift due to the Zeeman effect reads

_ (2) (upB)? 3
ABm, =mygupB+g=(J,my)=—=—-+0(B). (25)

Therefore Eq. (11) needs to be modified to

_  AFEca _ g5 (Jymy) ABca
gTi = gCa NS gCa mec2 ’

(26)

=:A552
where nonlinear effects are only considered on the tita-
. . 2 .
nium ion, gr(ﬁ)(J, my) is the second order Zeeman coef-

ficient. We use theoretical calculations of g%)(J, my) to
estimate the error of the g factor determination Agpg:
due to the second order Zeeman effect. Details of the

calculation are given below. Estimated values for Agpge
are listed in Table VII.

Calculation of the quadratic Zeeman coefficient

We use the isotope “8Ti* with the nuclear spin I = 0.
Since there is no hyperfine interaction, an energy shift
due to the quadratic Zeeman effect can be written as

B2
AE® = 4@, mﬂm_ (27)

MeC?

TABLE VII. Theoretical values for the second order Zeeman
coefficient for *8Ti* g(T2i) and the resulting correction to the
measured g-factor. The shift is below the statistical uncer-

tainty of the measurement and therefore not resolved.

State géﬂ? x 107 Aggz2 x 107
aiFm —2.798(5) —2.00
a4F5 /2 0.425(7) 0.304
a'Fr/s 1.191(6) 0.853
a'Fy o 1.252(3) 0.897

In Ref. [19], the expression for ac magnetic dipole po-
larizability was derived, including the summation over
intermediate positive- and negative-energy states. Using
this approach, we can divide the dimensionless coefficient
g? into two parts

9@ =g + 42, (28)

where the first and second terms stand for the positive
and negative-energy states contributions, respectively,
and are given by

Mec® ' | dnms|pz + Apz|yoJom)
g = = - (29)
HUB 7 EO En
Yndn
(2) 6282 9
gneg = 3 <’Y()J0mj IT‘ |’}/0J0mj>. (30)
12p5

The prime over Y in Eq. (29) means that the interme-
diate state |v,J,) = [70Jo) should be excluded from the
summation. The operators p, and Ay, are determined
by Egs. (9) and (10).

The summation in Eq. (29) covers all intermediate
positive-energy states allowed by the selection rules. In
the following, we assume that |yoJomy) is a |a*F;my)
state. In the sum over intermediate states, we take into
account only the states of the same a*F; manifold. For
example, to calculate g,g,%)s(a F5/2) we take into account
only the intermediate states a *Fj s2 and a i, /2-

We have verified that the contribution of all other in-
termediate states is negligible.

In the non-relativistic approximation, the expression
for the non-diagonal matrix elements (MEs) of the oper-
ator p, + Ap, is reduced to

|<’YanmJ |.Uz + A/Lz|'YOJOmJ>| =
«
= e (1+2) [ umy |S:120Jom)l,  (31)

where S is the total spin.

To study the role of relativistic corrections, we calcu-
lated the reduced MEs (7, J,||1||70Jo) using the nonrel-
ativistic expression Eq. (31) and the relativistic form of
the M1 operator, given by Eq. (9). We compare the
results obtained in Table VIII.



TABLE VIIL. (vnJu||pt|lv0Jo) (in ps) calculated in relativis-
tic (“Relativ.”) and nonrelativistic (“Nonrel.”) approxima-
tions and the QED correction determined as (v, Jn ||Ap||v0Jo)
(in up) are presented. The final results are obtained as rela-
tivistic values plus the QED correction.

Relativ.  Nonrel. QED Final
l(a'Fs/ol|ulla*Fs/2)|  3.0970  3.0984  0.0072  3.104
l(a'Fyol|ulla*Fs/2)|  3.5840  3.5857  0.0083  3.592
l(a'Fy/ollulla*Fr/2)|  3.1609  3.1623  0.0073  3.168

The table shows that the difference between the rela-
tivistic and nonrelativistic results is very small, 0.05%.
The QED correction to the M1 operator, calculated us-
ing Eq. (31), changes the results by 0.2%. The final re-
sults are obtained as the relativistic values plus the QED
correction.

In contrast to the quadrupole moments of a*F, the
M1 transition amplitudes between the fine-structure
states of this manifold are insensitive to the core- and
valence-valence correlations. As a result, the quadratic
Zeeman shift for these states can be calculated with good
accuracy. The calculation was carried out in the frame-
work of the CI+MBPT (I) method for the magnetic
quantum number mj; = 3/2, and the results are pre-
sented in Table IX.

TABLE IX. Calculated ¢‘®(J,m; = 3/2) coefficients. Un-
certainties are given in parentheses.

State g5k x 107 g2y x 107 9@ x 107
a’Fs/2 —2.815(3) 0.018(2) —2.798(5)
a’Fs /2 0.407(5) 0.018(2) 0.425(7)
a*Fr/2 1.174(4) 0.018(2) 1.191(6)
a*Fy/2 1.234(1) 0.018(2) 1.252(3)

We estimate the uncertainty of gr(f))s based on the dif-
ference between the relativistic and nonrelativistic values
of the matrix elements of the M1 operator. An addi-
tional source of uncertainty is gr(12e23. Since 72 is a scalar
operator, it is necessary to calculate the contribution of
valence and core electrons to (yoJom. [r?|y0Joms). The
core contribution is calculated in the single-electron ap-
proximation. We estimate the precision of this approx-
imation to be about 10%. Since the core contribution
gives about 40% of the total value of gr(lze)g, we conser-

vatively estimate the uncertainty of gr(lz)g at the level of

10%. The final uncertainties for ¢(® were found as the

sum of the uncertainties for 91()%)8 and gr(l?g.
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